Processing math: 100%
 
+0  
 
0
242
3
avatar

Find a/b when 2 log(a - 3b) = log a + log b.

 Jul 1, 2022
 #1
avatar
0

Find a/b if 2log(a3b)=loga+logb

 Jul 1, 2022
 #2
avatar
0

a/b = ((10^(log(ab)))/2b) + 3

Guest Jul 1, 2022
 #3
avatar
0

Using logs properties:       alog(x)=log(xa) and log(a)+log(b)=log(ab) yields:

 

log(a3b)2=log(ab)(a3b)2=ab

Expanding the left-hand side:

a26ab+9b2=ab

Simplify:

a27ab+9b2=0

Now, we want ab,  so we divide this equation by b2 to get:

(ab)27(ab)+9=0

This is a quadratic in ab, which we can solve directly or by substitution as follows:

Let y=ab

So our quadratic equation becomes:  y27y+9=0

Using the quadratic formula: y=7±49362=7±132

But recall: a>0,b>0, and a3b>0a>3bab>3

Thus, we reject: y2=7132 as it is less than 3.

Therefore, y1=ab=7+132 is the only solution.

Hope this helps!

 Jul 3, 2022

2 Online Users

avatar