We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
64
1
avatar

A vector v is called a unit vector if \(\|{v}\| = 1\).

Let a,b , and c be unit vectors, such that a+b+c=0, Show that the angle between any two of these vectors is \(120^\circ\).

(try to use vectors!)

 Feb 20, 2019
 #1
avatar+5038 
+2

\(a + b + c = 0\\ a + b = -c\\ (a+b)\cdot (a+b) = (-c)\cdot (-c)\\ \|a\|^2 + 2 a\cdot b + \|b\|^2 = \|c\|^2\\ 1 + 2a \cdot b + 1 = 1\\ 2a\cdot b = -1\\ a \cdot b = -\dfrac 1 2 \)

 

\(\text{the angle between }a \text{ and }b \text{ is given by}\\ \cos(\theta) = \dfrac{a\cdot b}{\|a\|\|b\|} = \dfrac{-\frac 1 2}{1} = -\dfrac 1 2\\ \theta = \arccos\left(-\dfrac 1 2\right) = \dfrac{2\pi}{3} = 120^\circ\)

.
 Feb 20, 2019

17 Online Users

avatar
avatar
avatar