We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
104
1
avatar

Let A be a \(2 \times 2\) matrix. Suppose that for every two-dimensional vector v, there exists a two-dimensional vector w such that \(\mathbf{A} \mathbf{w} = \mathbf{v}\)
Show that we can find a matrix B such that \(\mathbf{A} \mathbf{B} = \mathbf{I}\).

 Mar 13, 2019
 #1
avatar+5655 
+1

\(\exists w_1 \ni A w_1 = \begin{pmatrix}1\\0\end{pmatrix}\\ \exists w_2 \ni A w_2 = \begin{pmatrix}0\\1\end{pmatrix}\\ B = \begin{pmatrix}w_1 &w_2\end{pmatrix}\)

.
 Mar 13, 2019

2 Online Users

avatar