We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
63
1
avatar

If the quadratic $3x^2+bx+10$ can be written in the form $a(x+m)^2+n$, where $m$ and $n$ are integers, what is the largest integer that must be a divisor of $b$?

 May 14, 2019
 #1
avatar+8069 
+3

\(\ \phantom{=\qquad}3x^2+bx+10\\~\\ =\qquad3(x^2+\frac{b}{3}x)+10\\~\\ =\qquad3(x^2+\frac{b}{3}x+(\frac{b}{6})^2-(\frac{b}{6})^2)+10\\~\\ =\qquad3((x+\frac{b}{6})^2-(\frac{b}{6})^2)+10\\~\\ =\qquad3(x+\frac{b}{6})^2-3(\frac{b}{6})^2+10\)

 

Now it is in the form  a(x + m)2 + n   where

 

\(a=3\qquad \text{and}\qquad m=\frac{b}{6}\qquad \text{and}\qquad n=-3(\frac{b}{6})^2+10\)

 

In order for  m  to be an integer,  b  must be a multiple of  6

In order for  n  to be an integer,  b  must be a multiple of  6

The largest integer that must be a divisor of  b  in order for both  m  and  n  to be integers is  6

 May 14, 2019

9 Online Users

avatar
avatar