+0  
 
+5
657
3
avatar

1) There are 5040 commercial bee hives in a region threatened by African bees. Today African bees have taken over 70 hives. Experience in other areas shows that, in the absence of limiting factors, the African bees will increase the number of hives they take over by 20% each year. Make a logistic model that shows the number of hives taken over by African bees after t years. (Round r to three decimal places.)

 

5040/71e^(-.182t)+1

 

I got this part...BUT idk how to do part two?

 

2) Determine how long it will be before 1800 hives are affected. (Round your answer to two decimal places.) 

 Nov 22, 2015

Best Answer 

 #1
avatar+130555 
+10

For the second part, I think we have this

 

1800  = 5040 / [ 71 e^(-.182t)+1]   rearrange as

 

71 e^(-.182t)+1  =  5040/ 1800        subtract 1 from both sides

 

71e^(-.182t)  = [5040 - 1800] / 1800   simplify

 

71e^(-.182t)   = 1.8       divide both sides by 71

 

e^(-.182t)   = 1.8/ 71   take the ln of both sides

 

ln e^(-.182t)  = ln[ 1.8 / 71  ]      and we can write

 

-.182t ln e   =  ln [ 1.8/ 71]      and ln e = 1    so we can ignore this....and we have

 

-.182t   = ln [ 1.8 / 71]          divide both sides by -.182

 

t=  ln [ 1.8 / 71] /   [-.182 ]   = about   20.19 years

 

 

cool cool cool

 Nov 22, 2015
edited by CPhill  Nov 22, 2015
 #1
avatar+130555 
+10
Best Answer

For the second part, I think we have this

 

1800  = 5040 / [ 71 e^(-.182t)+1]   rearrange as

 

71 e^(-.182t)+1  =  5040/ 1800        subtract 1 from both sides

 

71e^(-.182t)  = [5040 - 1800] / 1800   simplify

 

71e^(-.182t)   = 1.8       divide both sides by 71

 

e^(-.182t)   = 1.8/ 71   take the ln of both sides

 

ln e^(-.182t)  = ln[ 1.8 / 71  ]      and we can write

 

-.182t ln e   =  ln [ 1.8/ 71]      and ln e = 1    so we can ignore this....and we have

 

-.182t   = ln [ 1.8 / 71]          divide both sides by -.182

 

t=  ln [ 1.8 / 71] /   [-.182 ]   = about   20.19 years

 

 

cool cool cool

CPhill Nov 22, 2015
edited by CPhill  Nov 22, 2015
 #2
avatar
0

πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ˜‹πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚πŸ™‚

.
 Nov 22, 2015
 #3
avatar
0

THANKS 

 Nov 22, 2015

0 Online Users