\(ax^2 + bx + c = a(x-r_1)(x-r_2) \\ ax^2 + bx + c = a(x^2 + x(-r_1 - r_2) + r_1 r_2) \\ ax^2 + bx + c = a \cdot x^2 + a \cdot x(-r_1 - r_2) + a \cdot r_1 r_2 \\ a(-r_1-r_2)=b \\ (-1)(a)(r_1+r_2)=b \\ r_1 + r_2 = - \frac{b}{a} \\ a \cdot r_1 r_2 = c \\ r_1 r_2 = \frac{c}{a}\)
.Note that Vieta's can be generalized for degree $n.$ Try finding a formula.