+0  
 
0
149
1
avatar

How many ways can a domino be placed on a 4x4 chessboard? Each "half" of the domino must cover exactly one square of the chessboard. 112 is not answer
 

Guest May 1, 2018

Best Answer 

 #1
avatar+20008 
+1

How many ways can a domino be placed on a 4x4 chessboard?

Each "half" of the domino must cover exactly one square of the chessboard.

 

There is a general formula:

The Number of domino tilings (or dimer coverings) of a 2n X 2n square is:

\(\displaystyle \prod \limits_{j=1}^{n}\prod \limits_{k=1}^{n} \left[ 4*\cos^2\left( \frac{j* \pi}{2*n+1} \right) + 4*\cos^2\left( \frac{k* \pi}{2*n+1} \right) \right]\)

 

Covering a 4 x 4 Chessboard with Dominoes: \(n = 2\)

\(\begin{array}{|rcll|} \hline \displaystyle \prod \limits_{j=1}^{2}\prod \limits_{k=1}^{2} \left[ 4*\cos^2\left( \frac{j* \pi}{5} \right) + 4*\cos^2\left( \frac{k* \pi}{5} \right) \right] = 36 \\ \hline \end{array} \)

 

Ther are 36 ways a domino can be placed on a 4x4 chessboard.

 

The 36 solutions for the 4 X 4 board:

\(\begin{array}{|rcll|} \hline A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)} \\ A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}\\ A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}\\ A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}\\ A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}\\ A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}\\ A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}\\ A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}\\ A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}\\ A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}\\ A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}\\ A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}\\ A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}\\ A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}\\ A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}\\ A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}\\ A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}\\ A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}\\ A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}\\ A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}\\ A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}\\ A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}\\ A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}\\ A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}\\ A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}\\ A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}\\ A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}\\ A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}\\ A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}\\ A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)} \\ \hline \end{array}\)

 

with \(\begin{array}{|r|r|r|r|} \hline 13 & 14 & 15 & 16 \\ \hline 9 & 10 & 11 & 12 \\ \hline 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 \\ \hline \end{array}\)

 

 

laugh

heureka  May 2, 2018
 #1
avatar+20008 
+1
Best Answer

How many ways can a domino be placed on a 4x4 chessboard?

Each "half" of the domino must cover exactly one square of the chessboard.

 

There is a general formula:

The Number of domino tilings (or dimer coverings) of a 2n X 2n square is:

\(\displaystyle \prod \limits_{j=1}^{n}\prod \limits_{k=1}^{n} \left[ 4*\cos^2\left( \frac{j* \pi}{2*n+1} \right) + 4*\cos^2\left( \frac{k* \pi}{2*n+1} \right) \right]\)

 

Covering a 4 x 4 Chessboard with Dominoes: \(n = 2\)

\(\begin{array}{|rcll|} \hline \displaystyle \prod \limits_{j=1}^{2}\prod \limits_{k=1}^{2} \left[ 4*\cos^2\left( \frac{j* \pi}{5} \right) + 4*\cos^2\left( \frac{k* \pi}{5} \right) \right] = 36 \\ \hline \end{array} \)

 

Ther are 36 ways a domino can be placed on a 4x4 chessboard.

 

The 36 solutions for the 4 X 4 board:

\(\begin{array}{|rcll|} \hline A01 = {(1,2), (3,4), (5,6), (7,8), (9,10), (11,12), (13,14), (15,16)} \\ A02 = {(1,2), (3,4), (5,6), (7,11), (9,10), (8,12), (13,14), (15,16)}\\ A03 = {(1,2), (3,4), (5,9), (6,7), (10,11), (8,12), (13,14), (15,16)}\\ A04 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,12), (13,14), (15,16)}\\ A05 = {(1,2), (3,4), (5,9), (6,10), (7,11), (8,12), (13,14), (15,16)}\\ A06 = {(1,2), (3,4), (5,6), (7,8), (9,10), (13,14), (11,15), (12,16)}\\ A07 = {(1,2), (3,4), (5,9), (6,10), (7,8), (11,15), (13,14), (12,16)}\\ A08 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,12), (15,16)}\\ A09 = {(1,2), (3,4), (5,6), (7,11), (8,12), (9,13), (10,14), (15,16)}\\ A10 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,11), (14,15), (12,16)}\\ A11 = {(1,2), (3,4), (5,6), (7,8), (9,13), (10,14), (11,15), (12,16)}\\ A12 = {(1,2), (5,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A13 = {(1,2), (3,7), (4,8), (5,9), (6,10), (11,12), (13,14), (15,16)}\\ A14 = {(1,2), (5,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}\\ A15 = {(1,2), (3,7), (4,8), (6,10), (5,9), (11,15), (12,16), (13,14)}\\ A16 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,14), (11,12), (15,16)}\\ A17 = {(1,2), (3,7), (4,8), (5,6), (9,13), (10,11), (14,15), (12,16)}\\ A18 = {(1,2), (5,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A19 = {(1,5), (2,6), (3,4), (7,8), (9,10), (11,12), (13,14), (15,16)}\\ A20 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,10), (13,14), (15,16)}\\ A21 = {(1,5), (3,4), (2,6), (9,10), (7,8), (11,15), (13,14), (12,16)}\\ A22 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,12), (15,16)}\\ A23 = {(1,5), (2,6), (3,4), (7,11), (8,12), (9,13), (10,14), (15,16)}\\ A24 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,11), (14,15), (12,16)}\\ A25 = {(1,5), (2,6), (3,4), (7,8), (9,13), (10,14), (11,15), (12,16)}\\ A26 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A27 = {(1,5), (2,6), (3,7), (4,8), (9,10), (11,12), (13,14), (15,16)}\\ A28 = {(1,5), (2,3), (6,7), (4,8), (9,10), (11,15), (13,14), (12,16)}\\ A29 = {(1,5), (2,6), (3,7), (4,8), (9,10), (13,14), (11,15), (12,16)}\\ A30 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,12), (15,16)}\\ A31 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,12), (15,16)}\\ A32 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A33 = {(1,5), (2,6), (3,7), (4,8), (9,13), (10,11), (14,15), (12,16)}\\ A34 = {(1,5), (2,3), (4,8), (6,10), (7,11), (9,13), (14,15), (12,16)}\\ A35 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,14), (11,15), (12,16)}\\ A36 = {(1,5), (2,3), (6,7), (4,8), (9,13), (10,11), (14,15), (12,16)} \\ \hline \end{array}\)

 

with \(\begin{array}{|r|r|r|r|} \hline 13 & 14 & 15 & 16 \\ \hline 9 & 10 & 11 & 12 \\ \hline 5 & 6 & 7 & 8 \\ \hline 1 & 2 & 3 & 4 \\ \hline \end{array}\)

 

 

laugh

heureka  May 2, 2018

30 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.