We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
129
1
avatar

math help 

 

http://prntscr.com/os4qmb

 Aug 14, 2019
 #1
avatar+23510 
+2

What is the soluton to the quadratic inequality?
\(6x^2 \geq 5-13x\)

 

 

\(\begin{array}{|rcll|} \hline \mathbf{6x^2} &\geq& \mathbf{5-13x} \quad | \quad -5+13x \\ 6x^2 +13x -5 &\geq& 0 \\ \overset{\text{quadratic formula}}{\ldots} \\ 6\left(x-\dfrac{1}{3}\right) \left(x+\dfrac{5}{2} \right) &\geq& 0 \quad | \quad : 6 \\\\ \mathbf{\left(x-\dfrac{1}{3}\right) \left(x+\dfrac{5}{2} \right)} &\geq&\mathbf{ 0 } \\ \hline \end{array} \)

 

We create a sign table:

\(\begin{array}{|l|c|c|c|c|c|c|c|} \hline \text{Interval or position} : & \left(-\infty,-\dfrac{5}{2}\right) & -\dfrac{5}{2} & \left(-\dfrac{5}{2},\dfrac{1}{3}\right) & \dfrac{1}{3} & \left(\dfrac{1}{3},\infty\right) \\ \hline \text{sign of } \left(x+\dfrac{5}{2} \right): & - & 0 & + & + & + \\ \hline \text{sign of } \left(x-\dfrac{1}{3}\right): & - & - & - & 0 & + \\ \hline \text{sign of }\left(x-\dfrac{1}{3}\right) \left(x+\dfrac{5}{2} \right): & \color{red}+ & \color{red}0 & - & \color{red}0 & \color{red}+ \\ \hline \end{array} \)

 

We can read the result:
in the interval \(\left(-\infty,-\dfrac{5}{2}\right]\) and \(\left[\dfrac{1}{3},\infty\right)\) the left side of the inequality is positive or zero, and thus the inequality is true there.

 

The solution is:  \(\mathbf{ x\leq -\dfrac{5}{2}}\)  and  \(\mathbf{x \geq \dfrac{1}{3}}\).

 

laugh

 Aug 14, 2019

28 Online Users

avatar