+0  
 
0
3
3129
3
avatar

Suppose you drop a ball from a window 40 meter above the ground.The ball bounces 70% of the previous height each bounce.What is the total number of meters the ball travels between the time it dropped and the tenth bounce?

 Mar 4, 2016
 #1
avatar+26400 
0

Suppose you drop a ball from a window 40 meter above the ground.The ball bounces 70% of the previous height each bounce.What is the total number of meters the ball travels between the time it dropped and the tenth bounce?

 

geometric sequence
\(a_1 = 40\ m \\ r = 70\ \% = 0.7\)

 

\(\begin{array}{rcll} s &=& a_1 \left( \frac{1-r^{11}}{1-r} \right) \\ s &=& 40 \left( \frac{1-0.7^{11}}{1-0.7} \right) \\ s &=& 40 \left( \frac{1-0.01977326743}{1-0.7} \right) \\ s &=& 40 \left( \frac{0.98022673257}{0.3} \right) \\ s &=& 40 \cdot 3.26742244190 \\ s &=& 130.696897676\ m \end{array}\)

 

laugh

 Mar 4, 2016
 #3
avatar+26400 
0

1. Ball up: n=11

 

 

\(\small{\begin{array}{lrcll} 1. \text{ Ball up }: \qquad && s_{10} = 40\cdot ( \frac{1-0.7^{10}}{1-0.7} ) &=& 129.5669967\ m\\ 2.\text{ Ball down }: \qquad &+& s_{10} = 40 \cdot ( \frac{1-0.7^{10}}{1-0.7} ) &=& 129.5669967\ m\\ 3.\text{}: \qquad &-& &&40\ m \\ \end{array}}\)

 

 

 

 

= 2 * 129.5669967 - 40  m

= 219.1339934 m

 

laugh

heureka  Mar 6, 2016
 #2
avatar+130518 
+5

I get something a little different from heureka, here

 

It's dropped 40 m ......  and then the distance given by the geometric series  :

 

2 *28* [ 1 - .7^9] / [ 1 - .7]  

 

So....the total distance traveled  =

 

40 + 2*28 * [ 1 - .7^9] / [ 1 - .7]   =  219.13 m

 

 

 

cool cool cool

 Mar 4, 2016

1 Online Users

avatar