We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
49
1
avatar

Let P be the matrix that projects onto j that is, we want P to satisfy

\(\mathbf{P} \mathbf{v} = \text{The projection of $\mathbf{v}$ onto } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \) for all vectors v.

Use the pictures below to calculate \(\mathbf{P}\mathbf{i}, \mathbf{P} \mathbf{j}, \mathbf{P}\mathbf{k} \).

 

Calculate the matrix P that projects onto j.

 Aug 15, 2019
 #1
avatar+5766 
+1

\(\text{$v$ projected onto $(0,1,0)$ is $(v \cdot (0,1,0))(0,1,0)$}\\ v \cdot (0,1,0) = v_y\\ v \perp (0,1,0) = (0,v_y,0)\\ \text{The matrix that will perform this is}\\ P=\begin{pmatrix}0&0&0\\0&1&0\\0&0&0\end{pmatrix}\)

.
 Aug 16, 2019

18 Online Users

avatar