+0  
 
0
647
1
avatar

Suppose functions $g$ and $f$ have the properties that $g(x)=3f^{-1}(x)$ and $f(x)=\frac{24}{x+3}$. For what value of $x$ does $g(x)=15$?

 Nov 16, 2014

Best Answer 

 #1
avatar+33661 
+5

 

$$f(x)=\frac{24}{x+3}$$

 

$$f^{-1}(x)=\frac{24}{x}-3$$

 

$$g(x)=\frac{3\times24}{x}-9$$

 

$$15=\frac{3*24}{x}-9\Rightarrow x=3$$

.

.
 Nov 16, 2014
 #1
avatar+33661 
+5
Best Answer

 

$$f(x)=\frac{24}{x+3}$$

 

$$f^{-1}(x)=\frac{24}{x}-3$$

 

$$g(x)=\frac{3\times24}{x}-9$$

 

$$15=\frac{3*24}{x}-9\Rightarrow x=3$$

.

Alan Nov 16, 2014

2 Online Users

avatar