+0  
 
0
177
1
avatar

What is the following value when expressed as a common fraction: $$\frac{1}{3^{1}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}?$$

Guest Jan 25, 2015

Best Answer 

 #1
avatar+91469 
+10

GP

a=1/3     r= 1/3     n=6

 

$$\\\boxed{S_n=\frac{a(1-r^n)}{1-r}}\\\\
S_6=\frac{\frac{1}{3}(1-(\frac{1}{3})^6)}{1-\frac{1}{3}}}\\\\
S_6=\frac{\frac{1}{3}(1-\frac{1}{3^6})}{\frac{2}{3}}}\\\\
S_6=\frac{1}{\not{3}}(1-\frac{1}{3^6})\times \frac{\not{3}}{2}\\\\
S_6=\frac{1}{2}(1-\frac{1}{3^6})\\\\$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{3}}}^{{\mathtt{6}}}}}\right)\right) = {\frac{{\mathtt{364}}}{{\mathtt{729}}}} = {\mathtt{0.499\: \!314\: \!128\: \!943\: \!758\: \!6}}$$

Melody  Jan 25, 2015
Sort: 

1+0 Answers

 #1
avatar+91469 
+10
Best Answer

GP

a=1/3     r= 1/3     n=6

 

$$\\\boxed{S_n=\frac{a(1-r^n)}{1-r}}\\\\
S_6=\frac{\frac{1}{3}(1-(\frac{1}{3})^6)}{1-\frac{1}{3}}}\\\\
S_6=\frac{\frac{1}{3}(1-\frac{1}{3^6})}{\frac{2}{3}}}\\\\
S_6=\frac{1}{\not{3}}(1-\frac{1}{3^6})\times \frac{\not{3}}{2}\\\\
S_6=\frac{1}{2}(1-\frac{1}{3^6})\\\\$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{3}}}^{{\mathtt{6}}}}}\right)\right) = {\frac{{\mathtt{364}}}{{\mathtt{729}}}} = {\mathtt{0.499\: \!314\: \!128\: \!943\: \!758\: \!6}}$$

Melody  Jan 25, 2015

7 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details