+0  
 
0
359
1
avatar

What is the following value when expressed as a common fraction: $$\frac{1}{3^{1}}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{4}}+\frac{1}{3^{5}}+\frac{1}{3^{6}}?$$

 Jan 25, 2015

Best Answer 

 #1
avatar+95361 
+10

GP

a=1/3     r= 1/3     n=6

 

$$\\\boxed{S_n=\frac{a(1-r^n)}{1-r}}\\\\
S_6=\frac{\frac{1}{3}(1-(\frac{1}{3})^6)}{1-\frac{1}{3}}}\\\\
S_6=\frac{\frac{1}{3}(1-\frac{1}{3^6})}{\frac{2}{3}}}\\\\
S_6=\frac{1}{\not{3}}(1-\frac{1}{3^6})\times \frac{\not{3}}{2}\\\\
S_6=\frac{1}{2}(1-\frac{1}{3^6})\\\\$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{3}}}^{{\mathtt{6}}}}}\right)\right) = {\frac{{\mathtt{364}}}{{\mathtt{729}}}} = {\mathtt{0.499\: \!314\: \!128\: \!943\: \!758\: \!6}}$$

.
 Jan 25, 2015
 #1
avatar+95361 
+10
Best Answer

GP

a=1/3     r= 1/3     n=6

 

$$\\\boxed{S_n=\frac{a(1-r^n)}{1-r}}\\\\
S_6=\frac{\frac{1}{3}(1-(\frac{1}{3})^6)}{1-\frac{1}{3}}}\\\\
S_6=\frac{\frac{1}{3}(1-\frac{1}{3^6})}{\frac{2}{3}}}\\\\
S_6=\frac{1}{\not{3}}(1-\frac{1}{3^6})\times \frac{\not{3}}{2}\\\\
S_6=\frac{1}{2}(1-\frac{1}{3^6})\\\\$$

 

$${\mathtt{0.5}}{\mathtt{\,\times\,}}\left({\mathtt{1}}{\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{{\mathtt{3}}}^{{\mathtt{6}}}}}\right)\right) = {\frac{{\mathtt{364}}}{{\mathtt{729}}}} = {\mathtt{0.499\: \!314\: \!128\: \!943\: \!758\: \!6}}$$

Melody Jan 25, 2015

45 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.