We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
74
2
avatar

Consider parallelogram ABCD with points S and T chosen such that CS:SD = BT:TC = 2, as in the picture.

 

Let and overrightarrow{AB} = v and overrightarrow{AD} = w. Then there exist constants r, s, t, u such that   overrightarrow{AT} = r v + s w, overrightarrow{BS} = t v + u w.

 

Also, what is \(\frac{AT^2+BS^2}{AC^2+BD^2}\)equal to?

 Aug 4, 2019
 #1
avatar+23071 
+2

math help

Consider parallelogram ABCD with points S and T chosen such that \(CS:SD = BT:TC = 2:1\), as in the picture.
Let \( \vec{AB} = v\) and \(\vec{AD} = w\).

 

1.
Then there exist constants r, s, t, u such that

\(\vec{AT} = r v + s w\),
\(\vec{BS} = t v + u w\).

 

\(\text{Let $\vec{AB} = \vec{DC}$ } \\ \text{Let $\vec{AD} = \vec{BC}$ }\)

 

\(\begin{array}{|rcll|} \hline \vec{AT} &=& v +\dfrac{2}{3}w \quad | \quad \vec{AT} = r v + s w \\ \mathbf{r} &=& \mathbf{1} \\ \mathbf{s} &=& \mathbf{\dfrac{2}{3}} \\\\ \vec{BS} &=& w -\dfrac{2}{3}v \quad | \quad \vec{BS} = t v + u w \\ \mathbf{t} &=& \mathbf{-\dfrac{2}{3}} \\ \mathbf{u} &=& \mathbf{1} \\ \hline \end{array}\)

 

 

laugh

 Aug 4, 2019
 #2
avatar+23071 
+1

math help

Consider parallelogram ABCD with points S and T chosen such that CS:SD = BT:TC = 2:1, as in the picture.
Let\( \vec{AB} = v\) and \(\vec{AD} = w\).
Then there exist constants r, s, t, u such that
\(\vec{AT} = r v + s w\),
\(\vec{BS} = t v + u w\).

 

2.

Also, what is\( \mathbf{\dfrac{AT^2+BS^2}{AC^2+BD^2}}\) equal to?

 

\(\begin{array}{|rcll|} \hline \left(\vec{AT}\right)^2 &=& \left(v +\dfrac{2}{3}w \right)^2 \\ \mathbf{\left(\vec{AT}\right)^2} &=& \mathbf{v^2+2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}w^2 } \\\\ \left(\vec{BS}\right)^2 &=& \left(w -\dfrac{2}{3}v \right)^2 \\ \mathbf{\left(\vec{BS}\right)^2} &=& \mathbf{w^2 - 2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}v^2 } \\\\ \left(\vec{AC}\right)^2 &=& \left(v+w \right)^2 \quad | \quad \vec{AC}=v+w \\ \mathbf{\left(\vec{AC}\right)^2} &=& \mathbf{v^2 + 2vw + w^2 } \\\\ \left(\vec{BD}\right)^2 &=& \left(w-v \right)^2 \quad | \quad \vec{BD}=w-v \\ \mathbf{\left(\vec{BD}\right)^2} &=& \mathbf{w^2 - 2vw + v^2 } \\ \hline \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2+2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}w^2+w^2 - 2\cdot \dfrac{2}{3}vw +\dfrac{4}{9}v^2} {v^2 + 2vw + w^2+w^2 - 2vw + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2+\dfrac{4}{3}vw +\dfrac{4}{9}w^2+w^2 - \dfrac{4}{3}vw +\dfrac{4}{9}v^2} {v^2 + w^2+w^2 + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2 +\dfrac{4}{9}w^2+w^2 +\dfrac{4}{9}v^2} {v^2 + w^2+w^2 + v^2} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{v^2 +\dfrac{4}{9}v^2+w^2 +\dfrac{4}{9}w^2} {2(v^2 + w^2)} \\\\ \dfrac{AT^2+BS^2}{AC^2+BD^2} &=& \dfrac{\dfrac{13}{9}(v^2+w^2)} {2(v^2 + w^2)} \\\\ \mathbf{\dfrac{AT^2+BS^2}{AC^2+BD^2}} &=& \mathbf{\dfrac{13}{18}} \\ \hline \end{array}\)

 

laugh

 Aug 4, 2019

31 Online Users

avatar
avatar
avatar
avatar
avatar