+0  
 
+1
124
7
avatar

Camy made a list of every possible distinct five-digit positive integer that can be formed using each of the digits 1, 3, 4, 5 and 6 exactly once in each integer. What is the sum of the integers on Camy's list?

 Mar 25, 2021
 #1
avatar
-1

four hundred fifty six

 Mar 25, 2021
 #2
avatar+759 
+6

the average value of 1, 3, 4, 5, and 6 = 4.4

 

multiply this by 11,111 (one for each tens place in the value)

 

and your answer is 4.4 * 11,111 = 5,866,608.​

 Mar 25, 2021
 #6
avatar+759 
+4

also multiply by 120 forgot to mention that it's 4.4 * 11111 * 120 aldskjf;alkjds

CentsLord  Mar 25, 2021
 #3
avatar+121004 
+5

Here's my best attempt  !!!

 

Look at  the "ones" digit......let's suppose it is  "1"

 

Then...we  have   4!  = 24  ways  to  arrange  the  other leading digits with  each 5 digit integer ending in "1"

 

And it will  be  the same for each of the other integers ending in 3, 4 , 5 or 6

 

So  the  sum  of  the  digits in the "ones"  place will  be

 

24  ( 1 + 3 + 4 + 5 + 6)  =  456

 

And   the same  will  happen  in the "tens,"  "hundreds," "thousands," and "ten thousands"  places

 

So....the  sum will be

 

456  ( 1  + 10  + 100 + 1000  +  10000)  =

 

456  ( 11111)   = 

 

5,066,616

 

 

cool cool cool

 Mar 25, 2021
 #4
avatar+121004 
+4

Darn, CentsLord....you're  making me look bad  .....LOL!!!!!!

 

Good job  !!!!

 

 

cool cool cool

 Mar 25, 2021
 #5
avatar+759 
+5

sir, it is quite the other way around.

CentsLord  Mar 25, 2021

14 Online Users

avatar
avatar