+0

# math problem

+1
124
7

Camy made a list of every possible distinct five-digit positive integer that can be formed using each of the digits 1, 3, 4, 5 and 6 exactly once in each integer. What is the sum of the integers on Camy's list?

Mar 25, 2021

#2
+6

the average value of 1, 3, 4, 5, and 6 = 4.4

multiply this by 11,111 (one for each tens place in the value)

Mar 25, 2021
#6
+4

also multiply by 120 forgot to mention that it's 4.4 * 11111 * 120 aldskjf;alkjds

CentsLord  Mar 25, 2021
#3
+5

Here's my best attempt  !!!

Look at  the "ones" digit......let's suppose it is  "1"

Then...we  have   4!  = 24  ways  to  arrange  the  other leading digits with  each 5 digit integer ending in "1"

And it will  be  the same for each of the other integers ending in 3, 4 , 5 or 6

So  the  sum  of  the  digits in the "ones"  place will  be

24  ( 1 + 3 + 4 + 5 + 6)  =  456

And   the same  will  happen  in the "tens,"  "hundreds," "thousands," and "ten thousands"  places

So....the  sum will be

456  ( 1  + 10  + 100 + 1000  +  10000)  =

456  ( 11111)   =

5,066,616   Mar 25, 2021
#4
+4

Darn, CentsLord....you're  making me look bad  .....LOL!!!!!!

Good job  !!!!   Mar 25, 2021
#5
+5

sir, it is quite the other way around.

CentsLord  Mar 25, 2021