+0  
 
0
811
4
avatar



Triangle LMN has vertexes at L(-1, -6), M(1, -6), and N(1, 1). Find the measure of angle N to the nearest degree.


 


Hint: Sketch the triangle on the coordinate plane and find the side lengths using the Distance Formula first.








 


A) 74º




 




 


B) 18º




 




 


C) 72º




 




 


D) 16º




 





 
 Oct 23, 2014

Best Answer 

 #4
avatar+118723 
+5

There you go - just as well everyone wasn't in a narky mood.    

 

N=16 degrees 

 

 Oct 24, 2014
 #1
avatar+118723 
0

Please present you question better - I cannot be bothered with all that scrolling. 

since your question has not been answered i assume I am notthe only one that feels this way.

 Oct 24, 2014
 #2
avatar+26400 
+5

Triangle LMN has vertexes at L(-1, -6), M(1, -6), and N(1, 1). Find the measure of angle N to the nearest degree. Answer D)

I.

$$\\ \overline{LM}=
\sqrt{
{[ (-1)-(1) ]}^2
+
{[ (-6)-(-6) ]}^2
}
=
\sqrt{
{( -2) }^2
+
{(0) }^2
}
=2 \\\\
\overline{MN}=
\sqrt{
{[ (1)-(1) ]}^2
+
{[ (-6)-(1) ]}^2
}
=
\sqrt{
{( 0 )}^2
+
{ (-7) }^2
}
=7 \\\\
\tan{(N)} = \dfrac{\overline{LM}}{\overline{MN}}=\frac{2}{7}\\\\
N=\tan^{-1}{(\frac{2}{7})} = 15.9453959009\ensurement{^{\circ}}\approx 16\ensurement{^{\circ}}$$

The answer is D) $$16\ensurement{^{\circ}}$$

 Oct 24, 2014
 #3
avatar+130511 
+5

Triangle LMN has vertexes at L(-1, -6), M(1, -6), and N(1, 1). Find the measure of angle N to the nearest degree.

Let's translate N so that it lies at (0,0)...then L= (-2, -7) and M = (0, -7).....this will make the calculation of the distances easier.......

So NL = √(4 + 49) = √(53)

And NM = √49 = 7

And ML = √4 = 2

And LMN forms a right triangle, with angle NML = 90

So.....using the Law of Sines, we have

NL / sin 90 = ML / sin(LNM)

√(53) = 2/sin(LNM)

sin(LNM) = 2/√(53)

sin-1[2/√(53] = LNM ≈15.945° ≈ 16°

 

 Oct 24, 2014
 #4
avatar+118723 
+5
Best Answer

There you go - just as well everyone wasn't in a narky mood.    

 

N=16 degrees 

 

Melody Oct 24, 2014

1 Online Users