+0  
 
0
251
2
avatar

Hard math:

 

If x+y = 2 and xy = 23, then what is x^2 + y^2?

Guest Jun 23, 2017
 #1
avatar
+1

There are no "real" solutions, just "complex" ones:

x = 1 - i sqrt(22) ≈ 1.00000 - 4.69042 i and y = 1 + i sqrt(22) ≈ 1.00000 + 4.69042 i

x = 1 + i sqrt(22) ≈ 1.00000 + 4.69042 i and y = 1 - i sqrt(22) ≈ 1.00000 - 4.69042 i

So that: ( 1 + i sqrt(22))^2 + (1 - i sqrt(22))^2 

Simplify the following:
(i sqrt(22) + 1)^2 + (-(i sqrt(22)) + 1)^2

(i sqrt(22) + 1)^2 = 1 + i sqrt(22) + i sqrt(22) - 22 = 2 i sqrt(22) - 21:
2 i sqrt(22) - 21 + (-(i sqrt(22)) + 1)^2

(-(i sqrt(22)) + 1)^2 = 1 - i sqrt(22) - i sqrt(22) - 22 = -2 i sqrt(22) - 21:
-21 + 2 i sqrt(22) + -2 i sqrt(22) - 21

-21 + 2 i sqrt(22) - 21 - 2 i sqrt(22) = -42:
Answer: |  -42

Guest Jun 23, 2017
 #2
avatar+88775 
+2

 

x + y  = 2     square both sides →  x^2 + 2xy + y^2  =  4

 

Since  xy  = 23,, then  2xy  = 46

 

So we have that

 

x^2 + 46 + y^2  = 4       subtract 46 from both sides

 

x^2 + y^2  =  -42

 

 

cool cool cool

CPhill  Jun 23, 2017

33 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.