We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
297
2
avatar

If the surface area of a cylinder with radius of 4 feet is 48pi square feet, what is its volume?

 Aug 5, 2018
 #1
avatar
0

Volume = Pi x r^2 x h

S. Area  =[2 x pi x r x h] + [2 x pi x r^2]

48pi      =[2 x 3.141592 x 4 x h] + [2 x 3.141592 x 4^2], solve for h(height)

h            =2 feet

 

Volume =3.141592 x 4^2 x 2

               =100.53 feet^3

 Aug 5, 2018
edited by Guest  Aug 5, 2018
 #2
avatar+22343 
+1

If the surface area of a cylinder with radius of 4 feet is 48pi square feet,

what is its volume?


\(\text{Let $V$ the volume of a cylinder.} \\ \text{Let $r$ the radius of a cylinder.} \\ \text{Let $h$ the height of a cylinder.} \\ \text{Let $S$ the surface area of a cylinder.}\)

 

\(\begin{array}{|lrcll|} \hline (1) & V &=& \pi r^2h \\ \\ \hline \\ & S &=& 2\pi r^2 + 2\pi rh \quad & | \quad -2\pi r^2 \\ (2) & S-2\pi r^2 &=& 2\pi rh \\ \\ \hline \\ \dfrac{(1)}{(2)} & \dfrac{V}{S-2\pi r^2} &=& \dfrac{\pi r^{2}h}{2\pi rh} \\\\ & \dfrac{V}{S-2\pi r^2} &=& \dfrac{\not{\pi} r^{\not{2}}\not{h}}{2\not{\pi} \not{r}\not{h}} \\\\ & \dfrac{V}{S-2\pi r^2} &=& \dfrac{r}{2} \quad & | \quad \cdot \left( S-2\pi r^2 \right) \\\\ & V &=& \dfrac{r}{2}\cdot \left(S-2\pi r^2 \right) \quad & | \quad S=48\pi,\quad r=4 \\\\ & V &=& \dfrac{4}{2}\cdot \left(48\pi-2\pi 4^2 \right) \\\\ & V &=& 2\cdot \left(48\pi-32\pi \right) \\\\ & V &=& 2\cdot \left(16\pi \right) \\\\ & \mathbf{V} &\mathbf{=}& \mathbf{32\pi \ feet^3 } \\ \hline \end{array}\)

 

laugh

 Aug 6, 2018

15 Online Users

avatar
avatar