Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2
929
2
avatar

3^x=5x

 Jan 17, 2017

Best Answer 

 #2
avatar+26396 
+65

3^x=5x

 

We can use the Lambert W Function.

The link to the Lambert W Function Calculator is:

http://www.had2know.com/academics/lambert-w-function-calculator.html

 

3x=5x|change of basisexln(3)=5x|:exln(3)1=5xexln(3)|:515=xexln(3)|(ln(3))ln(3)5=xln(3)exln(3)The Lambert W function is the inverse of the function f(x)=xexxln(3)=W(ln(3)5)|:(ln(3))x=1ln(3)W(ln(3)5)

 

We calculate W(ln(3)5)=W(0.21972245773)

 

 

Because the parameter -0.21972245773 is in the interval (-1/e, 0), the funcion returns two values.

v1=2.384291v2=0.295163

 

We calculate x1 and x2:

x1=1ln(3)v1x1=1ln(3)(2.384291)x1=2.170275x2=1ln(3)v2x2=1ln(3)(0.295163)x2=0.268669

 

The image:

 

 

laugh

 Jan 17, 2017
edited by heureka  Jan 17, 2017
 #1
avatar+130475 
+5

3^x=5x 

 

We can solve this graphically

 

x ≈ .269

 

 

 

cool cool cool

 Jan 17, 2017
 #2
avatar+26396 
+65
Best Answer

3^x=5x

 

We can use the Lambert W Function.

The link to the Lambert W Function Calculator is:

http://www.had2know.com/academics/lambert-w-function-calculator.html

 

3x=5x|change of basisexln(3)=5x|:exln(3)1=5xexln(3)|:515=xexln(3)|(ln(3))ln(3)5=xln(3)exln(3)The Lambert W function is the inverse of the function f(x)=xexxln(3)=W(ln(3)5)|:(ln(3))x=1ln(3)W(ln(3)5)

 

We calculate W(ln(3)5)=W(0.21972245773)

 

 

Because the parameter -0.21972245773 is in the interval (-1/e, 0), the funcion returns two values.

v1=2.384291v2=0.295163

 

We calculate x1 and x2:

x1=1ln(3)v1x1=1ln(3)(2.384291)x1=2.170275x2=1ln(3)v2x2=1ln(3)(0.295163)x2=0.268669

 

The image:

 

 

laugh

heureka Jan 17, 2017
edited by heureka  Jan 17, 2017

0 Online Users