3^x=5x
We can use the Lambert W Function.
The link to the Lambert W Function Calculator is:
http://www.had2know.com/academics/lambert-w-function-calculator.html
3x=5x|change of basisexln(3)=5x|:exln(3)1=5x⋅e−xln(3)|:515=x⋅e−xln(3)|⋅(−ln(3))−ln(3)5=−xln(3)⋅e−xln(3)The Lambert W function is the inverse of the function f(x)=xex−xln(3)=W(−ln(3)5)|:(−ln(3))x=1−ln(3)⋅W(−ln(3)5)
We calculate W(−ln(3)5)=W(−0.21972245773)
Because the parameter -0.21972245773 is in the interval (-1/e, 0), the funcion returns two values.
v1=−2.384291v2=−0.295163
We calculate x1 and x2:
x1=1−ln(3)⋅v1x1=−1ln(3)⋅(−2.384291)x1=2.170275x2=1−ln(3)⋅v2x2=−1ln(3)⋅(−0.295163)x2=0.268669
The image:
3^x=5x
We can use the Lambert W Function.
The link to the Lambert W Function Calculator is:
http://www.had2know.com/academics/lambert-w-function-calculator.html
3x=5x|change of basisexln(3)=5x|:exln(3)1=5x⋅e−xln(3)|:515=x⋅e−xln(3)|⋅(−ln(3))−ln(3)5=−xln(3)⋅e−xln(3)The Lambert W function is the inverse of the function f(x)=xex−xln(3)=W(−ln(3)5)|:(−ln(3))x=1−ln(3)⋅W(−ln(3)5)
We calculate W(−ln(3)5)=W(−0.21972245773)
Because the parameter -0.21972245773 is in the interval (-1/e, 0), the funcion returns two values.
v1=−2.384291v2=−0.295163
We calculate x1 and x2:
x1=1−ln(3)⋅v1x1=−1ln(3)⋅(−2.384291)x1=2.170275x2=1−ln(3)⋅v2x2=−1ln(3)⋅(−0.295163)x2=0.268669
The image: