+0  
 
0
92
1
avatar+212 

Forgot how to do this......

 

 

Find the fourth arithmetic means between -21 and -36

quilly  Apr 5, 2018
 #1
avatar+19603 
0

Find the fourth arithmetic means between -21 and -36

 

\(\text{We use $a_n = a_1 + (n-1)d$ to find the common difference $d$.} \)

 

Solution

\(\text{The first term is $a_1 = - 21$ and the fourth term is $a_4 = - 36 $.}\\ \text{We must find the common difference so that the terms }\)

 

\(\begin{array}{cccc} -21, & -21+d, & -21+2d, & -36 \\ \uparrow & \uparrow & \uparrow & \uparrow \\ a_1 & a_2 & a_3 & a_4 \end{array}\)

 

\(\text{form an arithmetic sequence.} \)

 

\(\text{To find the common difference $d$, we substitue $-21$ for $a_1$; 4 for $n$, and $-36$ for $a_n \\$in the formula for the 4th term:}\)

 

\(\begin{array}{rcll} a_4 &=& a_1 + (n-1)d \qquad & \text{This gives the 4th term of any arithmetic sequence.} \\ -36 &=& -21 + (4-1)d \qquad & \text{Substitute.} \\ -36 &=& -21 + 3d \qquad & \text{Subtract within the parentheses.}\\ -15 &=& 3d \qquad & \text{Subtract -21 from both sides.} \\ -5 &=& d \qquad & \text{To isolate d, divide both sides by 3.} \\ \end{array}\)

 

\(\text{To find the two arithmetic means between $-21$ and $-36$, $\\$we add the common difference $-5$, as shown:}\)

 

\(\begin{array}{rcll} -21+d &=& -21 +(-5) \\ &=& -26 \qquad & \text{This is $a_2$.} \\ \end{array}\)

 

\(\begin{array}{rcll} -21+2d &=& -21 +2(-5) \\ &=& -21 -10 \\ &=& -31 \qquad & \text{This is $a_3$.} \\ \end{array}\)

 

\(\text{Two arithmetic means between $-21$ and $-36$ are $-26$ and $-31$.} \)

 

 

 

laugh

heureka  Apr 5, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.