+0  
 
-1
2
4
avatar+267 

In triangle ABC, cos A=sqrt(7/10) and cos B=sqrt(3/10) Find cos C

 Oct 7, 2025
 #1
avatar+130554 
+2

arcos (sqrt (.7)) + arcos (sqrt(.3)) = 90°

 

cos C  =  180 - 90  =  cos (90°) = 0

 

 

cool cool cool

 Oct 8, 2025
 #3
avatar+77 
+1

is it doable without arccos?

Iwillsueyou69420  Oct 11, 2025
 #2
avatar+77 
+1

is there a way to do it without arcos?

 Oct 11, 2025
 #4
avatar+130554 
+1

Assuming a right triangle

Let the legs =  AC =  sqrt 7    and  BC =   sqrt 3

 

The hypotenuse = 

 

sqrt [ (sqrt .7)^2  + (sqrt .3)^2]   =  sqrt [ 7 + 3]  = sqrt 10  = AB

 

So....noting that cos B  = sinA

 

cos^2 B + cos^2 A  =

 

sin^2 A + cos^2A  = 1

 

(sqrt (3/10)^2  +(sqrt (7/10)^2  =  1

 

3/10  +  7/10  =  1

 

Then  angle C  is  opposite the hypotenuse  so its measure = 90°

 

And cos C =   cos (90°)  =  0

 

cool cool cool

 Oct 16, 2025

0 Online Users