+0  
 
0
107
5
avatar+701 

http://prntscr.com/lisuzo

 Nov 15, 2018
 #1
avatar+512 
0

a) We must let \(f(x)=0\).

\(3x^3+10x^2-13x-20=0\), and solving we get \(x=-4, -1, \frac{5}{3}\) .

Therefore, the x-intercepts are \(x=-4, -1, \frac{5}{3}\).

 

b) Let \(x=0\) , and solving we get \(-20\) .

Therefore, the y-intercept is \(y=-20\).

 

c) This is simple, make a point between \(x=-4\) and \(x=-1\), for example, \((-3, 0)\).

Same for \(x=-1\) and \(x=5/3\) , for example, \((1, 0)\) .

 

d) As \(x\) goes toward negative infinity, we know that \(x^3\) will always decrease, and vice versa.

 

e) Your graph may look something like this:

 

You are very welcome!

:P

 Nov 15, 2018
 #2
avatar+701 
0

!!! :)

 Nov 15, 2018
 #3
avatar+96067 
+1

 

Let's see how CS  might have determined the x intercepts  (roots)

 

3x^3 + 10x^2 -13x - 20

 

By the Rational Roots Theorem ......one possible root is  -1

So

3(-1)^3 + 10(-1)^2 - 13(-1) - 20 =  -3 + 10 + 13 - 20  =  0

 

Using synthetic division, we can find the remaining polynomial

 

 

-1  [  3   10    - 13     -20 ]

              -3     - 7       20

      __________________

       3     7    -20         0

 

 

So....the remaining polynomial is   3x^2  + 7x - 20

 

Factoring, we have

 

(3x - 5) ( x + 4)

 

Setting each factor to 0  and solving for x we have that the other two roots are

x= 5/3     and x = -4

 

Then the x intercepts are  x = -4, -1   and 5/3

 

The rest of the answer is as CS has shown....!!!

 

 

cool cool cool

 Nov 15, 2018
 #4
avatar+701 
0

thankyouu bothh

 Nov 15, 2018
 #5
avatar+512 
0

You're welcome! ;)

CoolStuffYT  Nov 15, 2018

32 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.