+0  
 
+1
45
2
avatar+623 

http://prntscr.com/l8rzbo

critical  Oct 21, 2018
 #1
avatar+2714 
+3

\(x^2 + m x + n = 0,~(m,n)\in \mathbb{Z} \\ \text{the only possible value for x is }x = -3\\ x^2 + m x + n = (x+3)^2 = x^2 + 6x + 9\\ m = 6\)

Rom  Oct 21, 2018
 #2
avatar+90969 
+2

Since   x  = -3 is the only value that makes the quadratic  = 0.....then this has a "double" root

 

So...the sum  of the roots  =  -3 + -3  =  -6

 

And the sum of the roots  in the form ax^2 + bx + c  =  -b/a 

 

So...in our case, the sum of the roots are  =  - m / 1  =   -m

 

So

 

-m   = -6

 

m  = 6

 

 

cool cool cool

CPhill  Oct 22, 2018

22 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.