We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Math

0
755
1

The coordinates of the vertices of trapezoid ABCD are A(2, 6) , B(5, 6) , C(7, 1) , and D(−1, 1) . The coordinates of the vertices of trapezoid A′B′C′D′ are A′(−6, −2) , B′(−6, −5) , C′(−1, −7) , and D′(−1, 1) .

Which statement correctly describes the relationship between trapezoid ABCD and trapezoid A′B′C′D′ ?

Trapezoid ABCD is congruent to trapezoid A′B′C′D′ because you can map trapezoid ABCD to trapezoid A′B′C′D′ by reflecting it across the x-axis and then across the y-axis, which is a sequence of rigid motions.

Trapezoid ABCD is congruent to trapezoid A′B′C′D′ because you can map trapezoid ABCD to trapezoid A′B′C′D′ by rotating it 180° about the origin and then translating it 4 units left, which is a sequence of rigid motions.

Trapezoid ABCD is congruent to trapezoid A′B′C′D′ because you can map trapezoid ABCD to trapezoid A′B′C′D′ by reflecting it across the x-axis and then rotating it 90° clockwise, which is a sequence of rigid motions.

Trapezoid ABCD is not congruent to trapezoid A′B′C′D′ because there is no sequence of rigid motions that maps trapezoid ABCD to trapezoid A′B′C′D′ .

Mar 6, 2018

### 1+0 Answers

#1
+3

Not the first option  because  reflecting D =  (- 1, 1)   across the x  axis produces (-1,-1)  and  reflecting this across the y axis produces  ( 1, - 1)   which isn't  D'

Not he second option  because    rotating  D =  (-1, 1)  180°   about thhhe origin produces ( 1, - 1)....shifting this 4 units too the left produces  ( -3, -1)  which isn't  D'

Third  option because

(2, 6)  across x  ⇒ (2, - 6) ⇒ 90° clockwise ⇒  (-6, -2)  = A'

(5, 6)  across x   ⇒ (5, -6)  ⇒ 90° clockwise ⇒ (-6, - 5) = B'

(7, 1) across x ⇒ (7, - 1)  ⇒ 90° clockwise ⇒  (-1, -7) = C'

( - 1, 1)  across x ⇒ ( -1, - 1) ⇒ 90° clockwise ⇒ (-1, 1) = D'   Mar 6, 2018