\(48∗4^𝑥+27=𝑎+𝑎∗4^𝑥+2\\ 48∗4^𝑥-𝑎∗4^𝑥=𝑎+2-27\\ 4^x(48-a)=𝑎-25\\ 2^{2x}(48-a)=𝑎-25\\ 2^{2x}=\frac{𝑎-25}{48-a}\\ log_2{2^{2x}}=log_2\frac{𝑎-25}{48-a}\\ 2x=log_2\left(\frac{𝑎-25}{48-a}\right)\\ x=\frac{1}{2}log_2\left(\frac{𝑎-25}{48-a}\right)\\\)
BUT you cannot find the log of a negative number so
\(\frac{𝑎-25}{48-a}>0 \qquad and \quad 48-a\ne0\\ \frac{𝑎-25}{48-a}>0 \qquad and \quad a\ne48\\ 25
\(x=\frac{1}{2}log_2\left(\frac{𝑎-25}{48-a}\right)\qquad where\;\;25
Here is the graph
Coding:
48∗4^𝑥+27=𝑎+𝑎∗4^𝑥+2\\
48∗4^𝑥-𝑎∗4^𝑥=𝑎+2-27\\
4^x(48-a)=𝑎-25\\
2^{2x}(48-a)=𝑎-25\\
2^{2x}=\frac{𝑎-25}{48-a}\\
log_2{2^{2x}}=log_2\frac{𝑎-25}{48-a}\\
2x=log_2\left(\frac{𝑎-25}{48-a}\right)\\
x=\frac{1}{2}log_2\left(\frac{𝑎-25}{48-a}\right)\\
\frac{𝑎-25}{48-a}>0 \qquad and \quad 48-a\ne0\\
\frac{𝑎-25}{48-a}>0 \qquad and \quad a\ne48\\
x=\frac{1}{2}log_2\left(\frac{𝑎-25}{48-a}\right)\\\qquad where\;\;25