+0  
 
0
216
1
avatar+644 

Find all values of t such that t - 1, t + 1, and 4 could be the lengths of the sides of a right triangle.

waffles  Oct 22, 2017
 #1
avatar+87691 
+2

If "t" has to be an integer...it is impossible to have integer sides with "4" as a hypotenuse

 

So.......I will assme that either

 

4^2 + ( t - 1)^2  = ( t + 1)^2     or    4^2 + (t + 1)^2  = (t - 1)^2

 

But.......for the second to be true, t  = -4, which would give us negative side lengths

 

So.....we have

 

4^2 + ( t - 1)^2  = ( t + 1)^2

 

16 -2t  =  2t

 

16  = 4t   →   t  = 4

 

So....the other two sides are 3 and 5

 

If there are no restrictions on t, we have that

 

( t - 1)^2  +  ( t + 1)^2  = 4^2

 

2t^2  + 2  =  16

 

t^2 =  7   →   t =  √7

 

So.....the sides are   √7 - 1 , √7 + 1 ,  4

 

 

cool cool cool

CPhill  Oct 22, 2017
edited by CPhill  Oct 22, 2017

26 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.