+0  
 
0
123
4
avatar

The diagram shows a 20 by 20 square . The points E, F and G are equally spaced on side BC. The points H, I, J, and K on side DA are placed so that the triangles BKE, EGF, FIG, and GHC are isosceles. Points L and M are midpoints of the sides AB and CD, respectively. Find the total area of the shaded regions.
 

 Nov 12, 2019
 #1
avatar
0

here is diagram if needed 

 

 Nov 12, 2019
 #2
avatar
0

i get what it is saying but i get too many variables that i get confused

 Nov 12, 2019
 #3
avatar+2850 
+2

fudge I accidently reloaded my page 2 times already, meaning that I had to re do my explanation two times.

 

calculate KBE

 

Base:

20/4 = 5

 

Height:

20

 

5 * 20 = 100 / 2 = 50

 

 

base of grey triangle is half of KBE, because BC is divided into 4 congruent parts, while LM, equal to BC, is divided into 8 parts.

 

So calculate grey triangle:

 

Base:

5/2 = 2.5

 

Height:

20 / 2 = 10

 

10 * 2.5 = 25/2 = 12.5

 

Count number of grey triangles. 8 triangles

 

 

So 12.5 * 8 = 100

 Nov 12, 2019
 #4
avatar+109740 
+1

I get the same as CU  with a little different reasoning

 

BE  =  (1/2) BC =   20/4 = 5

And the height of triangle  BKE  = 20

 

So...it's area =  (1/2) (5) (20)  = 50

 

The gray portion of this triangle  has 1/2 the base and /2  the height of  BKE

So its area = (1/2) (1/2) (50)   =50/4

 

And we have  8  of these congruent gray areas....so....the total gray area = 8 (50/4)  = 100 units^2

 

 

cool cool cool

 Nov 12, 2019

27 Online Users

avatar
avatar
avatar