+0  
 
+1
3
5
avatar+14 

1. Explain/show how to graph the function f(x)=sin(pix/3). 
 

PLEASE HELP ME GRAPH IT TOO <33
 

2. In the function f(x)=cos x, f(x) is multiplied by a factor of 3, x is replaced with 4x and 5 is added to the function. Explain the effects this has on the graph of the function (I.e. horizontally, vertically,compressed, stretched,etc.).

 

3. At a dock on the east coast, low tide occurs at 3 p.m. with a water depth of 5ft. The depth at high tide is 83 ft. High tide occurs every 6 hours. Explain how to find the sinusoidal function that models the depth in terms of time, X.

 

THESE ARE SEPARATE QUESTIONS, IF YOU CAN ANSWER THEM ALL PLEASE DO . I REALLY NEED UR HELP <333 

 Feb 20, 2025
 #1
avatar+130462 
+1

1.

 

y = sin ( (pi/3 * x)

 

Just a normal  sine graph with a different  period from normal  

 

This has the form

 

y= sin  (Bx)     where  B = pi/3

 

Period  = 2pi / B  =     2pi / (pi/3)  =  2pi * 3/pi  =  6

 

Here's the  graph

 

cool cool cool

 Feb 20, 2025
 #2
avatar+130462 
+1

2.

 

We have

 

y= A cos (Bx)  + C

 

y = 3cos (4x)  +  5

 

A= the amplitude  = 3    (vertical stretching)

B = 4

The   period = 2pi/ B =  (2pi) / 4  =  pi/2  =  ( horizontal compression from  normal period of 2pi)

 

5  just shifts  the normal  graph up 5 units

 

Here's  the normal graph  and our transformed graph 

 

 

 

cool cool cool

 Feb 20, 2025
 #3
avatar+14 
0

Sorry to bother 😭 but, can you also do question 3. 

queenirene721  Feb 20, 2025
 #4
avatar+130462 
+1

3. At a dock on the east coast, low tide occurs at 3 p.m. with a water depth of 5ft. The depth at high tide is 83 ft. High tide occurs every 6 hours. Explain how to find the sinusoidal function that models the depth in terms of time, X.

 

The function will be

y =  A cos (Bx + C)  +  D

 

High tide will occur at  noon  and  6 PM

Low tide occurs at 3PM and 9PM

The period =    6

So

2pi / B = 6

B = (2/6)pi  =  pi/3

 

Amplitude = A  = (high point -low point)/ 2 = (83 - 5) / 2  =  39

 

D =   (high point + low point) / 2 =    (83 + 5)  / 2 =  44 

 

Let noon be  x  =  0

 

The  hardest thing to figure is "C"

 

When x=  0, y= 83   we can  solve for "C"  thusly

y = 39sin (pi/3 *x + C) + D

83   = 39 sin (pi/3 * 0  + C)   + 44

39  = 39 sin (C)

39/39 = sin (C)

1  = sin (C)

arcsin (1)   = C

We are asking....where is the sin   = 1 ???     answer...at pi/2

arcsin (1)  = pi/2  =  C

 

So...our  function  is

 

y = 39 sin (pi/3 * x  + pi/2) + 44

 

Here's the graph

 

cool cool cool 

 Feb 20, 2025

2 Online Users

avatar