1. Explain/show how to graph the function f(x)=sin(pix/3).
PLEASE HELP ME GRAPH IT TOO <33
2. In the function f(x)=cos x, f(x) is multiplied by a factor of 3, x is replaced with 4x and 5 is added to the function. Explain the effects this has on the graph of the function (I.e. horizontally, vertically,compressed, stretched,etc.).
3. At a dock on the east coast, low tide occurs at 3 p.m. with a water depth of 5ft. The depth at high tide is 83 ft. High tide occurs every 6 hours. Explain how to find the sinusoidal function that models the depth in terms of time, X.
THESE ARE SEPARATE QUESTIONS, IF YOU CAN ANSWER THEM ALL PLEASE DO . I REALLY NEED UR HELP <333
1.
y = sin ( (pi/3 * x)
Just a normal sine graph with a different period from normal
This has the form
y= sin (Bx) where B = pi/3
Period = 2pi / B = 2pi / (pi/3) = 2pi * 3/pi = 6
Here's the graph
2.
We have
y= A cos (Bx) + C
y = 3cos (4x) + 5
A= the amplitude = 3 (vertical stretching)
B = 4
The period = 2pi/ B = (2pi) / 4 = pi/2 = ( horizontal compression from normal period of 2pi)
5 just shifts the normal graph up 5 units
Here's the normal graph and our transformed graph
3. At a dock on the east coast, low tide occurs at 3 p.m. with a water depth of 5ft. The depth at high tide is 83 ft. High tide occurs every 6 hours. Explain how to find the sinusoidal function that models the depth in terms of time, X.
The function will be
y = A cos (Bx + C) + D
High tide will occur at noon and 6 PM
Low tide occurs at 3PM and 9PM
The period = 6
So
2pi / B = 6
B = (2/6)pi = pi/3
Amplitude = A = (high point -low point)/ 2 = (83 - 5) / 2 = 39
D = (high point + low point) / 2 = (83 + 5) / 2 = 44
Let noon be x = 0
The hardest thing to figure is "C"
When x= 0, y= 83 we can solve for "C" thusly
y = 39sin (pi/3 *x + C) + D
83 = 39 sin (pi/3 * 0 + C) + 44
39 = 39 sin (C)
39/39 = sin (C)
1 = sin (C)
arcsin (1) = C
We are asking....where is the sin = 1 ??? answer...at pi/2
arcsin (1) = pi/2 = C
So...our function is
y = 39 sin (pi/3 * x + pi/2) + 44
Here's the graph