+0  
 
0
60
1
avatar+1148 

\(r(x)\)  has domain \(\{-1,0,1,2\}\)  and range \(\{0,2,4,6\}\)  .  \(s(x)\) has domain \{1,2,3,4\} and is defined by s(x)=x+1 . What is the sum of all possible values of \(s(r(x))\)?

tertre  Mar 12, 2017
Sort: 

1+0 Answers

 #1
avatar+4155 
+6

r(x) can be 0, 2, 4, and 6.

So the sum of all possible values of s(r(x)) = s(0) + s(2) + s(4) + s(6)

FREEEZE! there is no s(0) or s(6) because the domain of s(x) is {1,2,3,4}, so get rid of those.

s(2) + s(4)

= (2+1) + (4+1)

= 3 + 5

= 8

hectictar  Mar 12, 2017

8 Online Users

avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details