+0  
 
0
196
1
avatar+2765 

\(r(x)\)  has domain \(\{-1,0,1,2\}\)  and range \(\{0,2,4,6\}\)  .  \(s(x)\) has domain \{1,2,3,4\} and is defined by s(x)=x+1 . What is the sum of all possible values of \(s(r(x))\)?

tertre  Mar 12, 2017
 #1
avatar+7155 
+6

r(x) can be 0, 2, 4, and 6.

So the sum of all possible values of s(r(x)) = s(0) + s(2) + s(4) + s(6)

FREEEZE! there is no s(0) or s(6) because the domain of s(x) is {1,2,3,4}, so get rid of those.

s(2) + s(4)

= (2+1) + (4+1)

= 3 + 5

= 8

hectictar  Mar 12, 2017

12 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.