+0  
 
+5
156
2
avatar

Please solve this question:- a^3 + b^3 + c^3 -3abc, when ( a+b+c) = 4, & (ab+bc+ca)=7

Guest Feb 26, 2017
 #1
avatar+92781 
0

a^3 + b^3 + c^3 -3abc, when ( a+b+c) = 4, & (ab+bc+ca)=7

 

Is there a minus in front of the a^3 or not???

 

 

Try expanding (a+b+c)^3 and see what you get.  I have not done it but I expect it all will become obvious :)

Melody  Feb 26, 2017
 #2
avatar+87301 
0

(a + b + c)^3   = 4^3

 

a^3 + 3 a^2 b + 3 a^2 c + 3 a b^2 + 6 a b c + 3 a c^2 + b^3 + 3 b^2 c + 3 b c^2 + c^3 =  64

 

[a^3 + b^3 + c^3] + 3 [ a^2b + a^2c +b^2a + b^2c + c^2a + c^2b] + 6abc  = 64

 

[a^3 + b^3 + c^3] + 3a^2(b + c) + 3b^2(a + c) + 3c^2(a + b) + 6abc  = 64

 

[a^3 + b^3 + c^3] + 3a^2(4 - a) + 3b^2(4 - b) + 3c^2(4 - c) + 6abc  = 64

 

-2[ a^3 + b^3 + c^3] + 12[a^2 + b ^2 + c^2]  + 6abc  =  64     ...... divide by  -2

 

[ a^3 + b^3 + c^3] - 6[ a^2 + b^2 + c^2] - 3abc  = - 32      (1)

 

And  (a + b + c)^2  = 16

 

a^2 + 2 a b + 2 a c + b^2 + 2 b c + c^2  = 16

 

[a^2 + b^2 + c^2] + 2[ ab + bc + ca]  = 16

 

[a^2 + b^2 + c^2]  + 2 [ 7 ]  = 16

 

[a^2 + b^2 + c^2]  + 14  = 16

 

[a^2 + b^2 + c^2]  = 2     sub  this into  (1)

 

[ a^3 + b^3 + c^3] - 6[ 2 ] - 3abc  = - 32

 

[ a^3 + b^3 + c^3] - 12 - 3abc  = - 32

 

a^3 + b^3 + c^3 - 3abc  =  - 20

 

 

 

cool cool cool

CPhill  Feb 26, 2017

12 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.