+0  
 
0
211
6
avatar+502 

Pls help me on this question

 

http://pmt.physicsandmathstutor.com/download/Maths/A-level/C1/Papers-Edexcel/January%202007%20QP%20-%20C1%20Edexcel.pdf

 

question 9 part c

Rauhan  Dec 24, 2017

Best Answer 

 #2
avatar+92629 
+1

Hi Rauhan

 

9. Ann has some sticks that are all of the same length. She arranges them in squares and has made the following 3 rows of patterns:

Row 1

Row 2

Row 3

She notices that 4 sticks are required to make the single square in the first row,

7 sticks to make 2 squares in the second row

and in the third row she needs 10 sticks to make 3 squares.

(a) Find an expression, in terms of n, for the number of sticks required to make a similar arrangement of n squares in the nth row.

row (r) 1 2 3 ... n
match sticks (m) 4 7 10   3n+1

 Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows.

(b) Find the total number of sticks Ann uses in making these 10 rows.

m(10)=3*10+1=31 match sticks

 

 Ann started with 1750 sticks.

Given that Ann continues the pattern to complete k rows but does not have sufficient sticks to complete the (k + 1)th row,

 

(c) show that k satisfies (3k – 100)(k + 35) < 0.

The total number of sticks in k rows is 

 

\(4+7+10+.......(3k+1) \qquad \text{Sum of an AP}\\ =\frac{n}{2}(a+L)\\ =\frac{k}{2}(4+3k+1)\\ =\frac{k}{2}(3k+5)\\ now\\ \frac{k}{2}(3k+5)<1750\\ k(3k+5)<3500\\ 3k^2+5k<3500\\ 3k^2+5k-3500<0\\ \qquad 3*-3500=-10500\\ \qquad \text{I need 2 numbers that multiply to -10500 and add to +5}\\ \qquad \text{Those numbers are 105 and -100}\\ 3k^2+105k-100k-3500<0\\ 3k(k+35)-100(k+35)<0\\ (3k-100)(k+35)<0 \)

 

(d) Find the value of k.

 

if you graph y=(3k-100)(k+35)

it will be a concave up parabola and y will be less then 0  between the two zeros.

 

3k-100=0

3k=100

k=33 and a 1/3

and 

k=35=0

k=-35

 

k cant be negative so Ann will have enough sticks for 1 to 33 rows.

She will not have enough sticks for 34 rows.

So

k=33

 

 

Any questons, just ask :)

Melody  Dec 24, 2017
 #1
avatar+202 
+1

(3k – 100)(k + 35) < 0. 

 

You want every (...) to have different sign so 

 

 

the first () if k>33.333  ()>0 if k<33.333 ()<0                κ              -35           33.333    

the second () if k>-35 ()>0 if k<-35 ()<0                     (1)      -              -                    + 

                                                                                   (2)      -             +                    + 

                                                                              Finally    +              -                    + 

      

 

You want  (3k – 100)(k + 35) be <0 so       -35

 

                          κ  between  -35 and 33.333

Whitespy001  Dec 24, 2017
edited by Whitespy001  Dec 24, 2017
 #3
avatar+92629 
0

Thanks Whitespy

But... you have not actually answered part c.  indecision

Melody  Dec 24, 2017
 #4
avatar+202 
0

yes because i understand false the question :p Im sorry :( 

Whitespy001  Dec 24, 2017
 #5
avatar+92629 
+1

I understood that, it was not a problem :)

Melody  Dec 24, 2017
 #2
avatar+92629 
+1
Best Answer

Hi Rauhan

 

9. Ann has some sticks that are all of the same length. She arranges them in squares and has made the following 3 rows of patterns:

Row 1

Row 2

Row 3

She notices that 4 sticks are required to make the single square in the first row,

7 sticks to make 2 squares in the second row

and in the third row she needs 10 sticks to make 3 squares.

(a) Find an expression, in terms of n, for the number of sticks required to make a similar arrangement of n squares in the nth row.

row (r) 1 2 3 ... n
match sticks (m) 4 7 10   3n+1

 Ann continues to make squares following the same pattern. She makes 4 squares in the 4th row and so on until she has completed 10 rows.

(b) Find the total number of sticks Ann uses in making these 10 rows.

m(10)=3*10+1=31 match sticks

 

 Ann started with 1750 sticks.

Given that Ann continues the pattern to complete k rows but does not have sufficient sticks to complete the (k + 1)th row,

 

(c) show that k satisfies (3k – 100)(k + 35) < 0.

The total number of sticks in k rows is 

 

\(4+7+10+.......(3k+1) \qquad \text{Sum of an AP}\\ =\frac{n}{2}(a+L)\\ =\frac{k}{2}(4+3k+1)\\ =\frac{k}{2}(3k+5)\\ now\\ \frac{k}{2}(3k+5)<1750\\ k(3k+5)<3500\\ 3k^2+5k<3500\\ 3k^2+5k-3500<0\\ \qquad 3*-3500=-10500\\ \qquad \text{I need 2 numbers that multiply to -10500 and add to +5}\\ \qquad \text{Those numbers are 105 and -100}\\ 3k^2+105k-100k-3500<0\\ 3k(k+35)-100(k+35)<0\\ (3k-100)(k+35)<0 \)

 

(d) Find the value of k.

 

if you graph y=(3k-100)(k+35)

it will be a concave up parabola and y will be less then 0  between the two zeros.

 

3k-100=0

3k=100

k=33 and a 1/3

and 

k=35=0

k=-35

 

k cant be negative so Ann will have enough sticks for 1 to 33 rows.

She will not have enough sticks for 34 rows.

So

k=33

 

 

Any questons, just ask :)

Melody  Dec 24, 2017
 #6
avatar+502 
0

Thanks but i forgot where the question was in my notebook, lol now i need to find where i wrote this question

Rauhan  Dec 26, 2017

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.