+0  
 
0
166
1
avatar+2765 

The graphs of a function \(f(x)=3x+b\) and its inverse function \(f^{-1}(x)\) intersect at the point \((-3,a)\) . Given that b and a are both integers, what is the value of  \(a\)?

tertre  Mar 14, 2017
 #1
avatar+87333 
+5

The inverse function is

 

y = [x - b] / 3 

           

Set these functions equal

 

3x + b  =  [x - b]/ 3

 

9x + 3b   = x - b

 

8x  = -4b

 

b = -2x

 

So...using the first function

 

y = 3x - 2x

 

a = 3(-3) - 2(-3)

 

a = -9 + 6

 

a = -3         and   b  = -2(-3) =  6

 

Check

 

y = 3(x) + 6             and      y  =   [ x  - 6 ] / 3

a = 3(-3) + 6                       -3  = [ a  - 6] / 3 

a = -3                                 -3  = [ -3 - 6] / 3

                                          -3  = [-9] / 3

                                           -3  = -3            

 

So....the intersection point is (-3, -3)

 

See the graph here : https://www.desmos.com/calculator/r2jbhnwsj2

 

 

 cool cool cool

CPhill  Mar 14, 2017

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.