We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
327
1
avatar+270 

Find the solution of the system whose augmented matrix is:

 

\(\begin{pmatrix} 1 & 2 & 0 & | & 2\\ 2 & 0 & 1 & | & 1\\ 3 & 2 & 1 & | & 3 \end{pmatrix}\)

 Jan 29, 2018
 #1
avatar+101870 
+1

Let us find the determinant of this system

 

1  2  0   1  2

2  0  1   2  0

3  2   1  3  2

 

( 0  + 6  + 0 )  - ( 0 + 2 + 4)

 

6  -  6  =  0

 

This indicates that we either have no solutions or infinite solutions

 

Gretzu, we could solve this with Gaussian elimination, but it seems easier to just use some Algebra

 

We  have

 

x  + 2y    = 2 ⇒  2y  =  2 - x    (1)   

2x  + z  =  1       ⇒  z  =  1 - 2x    (2)

3x + 2y + z  = 3      (3)

 

Sub (1) and (2)  into (3)   and we have that

 

3x + (2 - x)  + (1 - 2x)  = 3     simplify

 

3  =  3

 

This is always true....so we have infinite solutions

 

Holding x  constant  we have the solutions   {  x, (2 - x) / 2  , 1 - 2x }

 

    

cool cool cool

 Jan 29, 2018
edited by CPhill  Jan 29, 2018

6 Online Users

avatar