+0  
 
0
34
1
avatar

For each value x,/(x) is defined to be the minimum value of the three numbers 2x + 2, + ½x + 1, and ¾x + 7. What is the maximum value of ƒ(x)?

Guest Oct 14, 2018
 #1
avatar+2758 
0

\(\forall -\dfrac 2 3 \leq x, ~\min\left(2x+2,~\dfrac 1 2 x + 1, ~\dfrac 3 4 x + 7\right) = \dfrac x 2 + 1 \\ \forall x < -\dfrac 2 3, ~\min\left(2x+2,~\dfrac 1 2 x + 1, ~\dfrac 3 4 x + 7\right) = 2x+2 \\ x \to \infty \Rightarrow \dfrac x 2 + 1 \to \infty \\ \text{and thus the Min of these three functions is unbounded.}\\ \text{One might say it's maximum values is }\infty \\ \text{but it's probably better to just say it has no maximum value}\)

Rom  Oct 16, 2018

33 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.