+0  
 
+1
3
772
5
avatar+177 

Suppose \(f(x),g(x),h(x)\) are all linear functions, and \(j(x)\) and \(k(x)\) are defined by 

 

\(j(x) = \max\{f(x),g(x),h(x)\},\)

 

\(k(x) = \min\{f(x),g(x),h(x)\}.\)

 

This means that, for each \(x\), we define \(j(x)\) to be equal to either  \(f(x), g(x),\) or \(h(x),\) whichever is greatest; similarly, \(k(x)\) is the least of these three values.

Shown below is the graph of \(y=j(x)\) for \(-3.5\le x\le 3.5\).

Let \(\ell\) be the length of the graph of \(y=k(x)\) for \(-3.5\le x\le 3.5\). What is the value of \(\ell^2\)?

 May 9, 2020
 #3
avatar+118677 
+2

Ok

 

Here is a good start to this question. 

But I have left some thinking for you to do.

 

 May 10, 2020
 #4
avatar+177 
+1

ok thanks for help

TheGreatestOofman  May 11, 2020
 #5
avatar+118677 
0

So have you answered the question?

Can you show what you have done or give the number answer.  (one you have found by yourself)

 

I am just wondering if you actually learned  anything from my answer.

Melody  May 11, 2020

0 Online Users