+0  
 
0
39
4
avatar

What is the minimum value of the expression $2x^2+3y^2+8x-24y+62$ for real $x$ and $y$?

Guest Nov 27, 2018
 #1
avatar+3178 
+1

\(2x^2 + 3y^2 + 8x - 24y + 62 = \\ 2(x^2 +4x) + 3(y^2 -8y) + 62 = \\ 2(x^2+4x+4-4) + 3(y^2 -8y+16-16) + 62 =\\ 2(x+2)^2-8 + 3(y-4)^2 -48 + 62 =\\ 2(x+2)^2 +3(y-4)^2 +6 \\ \text{which is clearly minimum at }x=-2,~y=4 \\ \text{and has the minimum value of }6\)

Rom  Nov 27, 2018
 #2
avatar+20633 
+7

What is the minimum value of the expression 2x^2+3y^2+8x-24y+62 for real x and y?

 

\(\begin{array}{|rclrcl|} \hline f(x,y) &=& 2x^2+3y^2+8x-24y+62 \\ f_x &=& 4x+8 \quad & \quad f_y &=& 6y-24 \\ f_x &=& 0 \quad & \quad f_y &=& 0 \\ 4x+8 &=& 0 \quad & \quad 6y-24 &=& 0 \\ x &=& \dfrac{-8}{4} \quad & \quad y &=& \dfrac{24}{6} \\ x &=& -2 \quad & \quad y &=& 4 \\ && \text{The critical Point is: } (-2,4). \\ \hline \end{array}\)

 

\(\begin{array}{|l|} \hline \text{Find the nature of the critical Point, we apply the second derivative test: } \\ \quad \text{If } f_{xx}\cdot f_{yy} - \left(f_{xy}\right)^2 > 0 \text{ and } f_{xx} > 0 \text{ minimum point } \\ \quad\text{If } f_{xx}\cdot f_{yy} - \left(f_{xy}\right)^2 > 0 \text{ and } f_{xx} < 0 \text{ maximum point } \\ \quad\text{If } f_{xx}\cdot f_{yy} - \left(f_{xy}\right)^2 < 0 \text{ saddle point } \\ \quad f_{xx} = 4, ~ f_{xy}=0, ~ f_{yy} = 6 \\ \quad f_{xx}\cdot f_{yy} - \left(f_{xy}\right)^2 = 4\cdot 6-0^2 = 24 > 0 \text{ and } f_{xx} = 4 > 0 \text{ minimum point } \\ \hline \end{array}\)

 

laugh

heureka  Nov 27, 2018
edited by heureka  Nov 27, 2018
edited by heureka  Nov 27, 2018
 #3
avatar+92641 
+1

Thanks, heureka  !!!

 

Refresh my memory.....

 

How is   fxy    calculated   ???

 

 

cool cool cool

CPhill  Nov 27, 2018
 #4
avatar+20633 
+6

How is   \(\mathbf{f_{xy}}\)    calculated   ?

 

\(\boxed{f(x,y) = 2x^2+3y^2+8x-24y+62 } \\ \small{ \begin{array}{|rcl|rcl|} \hline \dfrac{\partial f}{\partial x} = &f_x& = 4x + 8 \quad & \quad \dfrac{\partial f}{\partial y} = &f_y& = 6y-24 \\ \dfrac{ d\left(\dfrac{\partial f}{\partial x}\right) }{\partial x}= \dfrac{\partial^2 f}{\partial x\partial x} = &f_{xx}& = 4 ~ & ~ \dfrac{ d\left(\dfrac{\partial f}{\partial y}\right) }{\partial y}= \dfrac{\partial^2 f}{\partial y\partial y} = &f_{yy}& = 6 \\\\ \dfrac{ d\left(\dfrac{\partial f}{\partial x}\right) }{\partial y}= \dfrac{\partial^2 f}{\partial x\partial y} = &f_{xy}& = \dfrac{ d(4x+8)}{\partial y} = 0 ~ & ~ \dfrac{ d\left(\dfrac{\partial f}{\partial y}\right) }{\partial x}= \dfrac{\partial^2 f}{\partial y\partial x} = &f_{yx}& = \dfrac{d(6y-24)}{\partial x} = 0 \\\\ \hline \end{array}}\\ \boxed{f_{xy} = f_{yx}} \\ \)

 

laugh

heureka  Nov 27, 2018

29 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.