The real numbers x and y satisfy (x - 3)^2 + (y - 4)^2 = 18. Find the minimum value of x^2 + y^2.
The real numbers x and y satisfy (x−3)2+(y−4)2=18.
Find the minimum value of x2+y2.
Let the origin O=(0,0) Let the center of the circle C=(3,4) Let the radius of the circle r=√18=3√2 Let x2+y2=r2min
1. Distance between origin and center of the circle:
¯OC=√(0−3)2+(0−4)2¯OC=√9+16¯OC=√25¯OC=5
2. x2+y2=r2min
rmin=¯OC−rrmin=5−3√2x2+y2=r2minx2+y2=(5−3√2)2x2+y2=43−30√2The minimum value of x2+y2=0.5735931288