+0  
 
0
829
3
avatar+249 

1. Find the least four-digit solution r of the congruence \(r^2 + 4r + 4 \equiv r^2 + 2r + 1 \pmod{55} \).

 

2. If a,b, and c are integers from the set of positive integers less than 7 such that \(abc\equiv 1\pmod 7, 5c\equiv 2\pmod 7, 6b\equiv 3+b\pmod 7,\) then what is the remainder when a+b+c is divided by 7?

 

3. What is the smallest integer b>3 for which the base b number 23_b is a perfect square?

 Sep 3, 2016

Best Answer 

 #3
avatar+118677 
+10

3. What is the smallest integer b>3 for which the base b number 23_b is a perfect square?

 

\(2b+3=x^2\)

 

I just tried them one at a time.

The smallest is    b=11

 

2*11+3=25=5^2

 Sep 4, 2016
 #1
avatar+118677 
+10

1. Find the least four-digit solution r of the congruence .  

\(r^2 + 4r + 4 \equiv r^2 + 2r + 1 \pmod{55}\)

 

I am not sure but I will give it a shot

\(\begin{align} r^2 + 4r + 4 &\equiv r^2 + 2r + 1 \pmod{55}\\ 2r &\equiv -3 \pmod{55}\\ 2r&=55x-3\\ 55x-2r&=3 \qquad x\in Z \qquad r \in Z \quad r \ge 1000\\ &\mbox{so if r=1000 then}\\ 55x-2000&=3\\ 55x&=2003\\ x&=37\\ \end{align}\\ \mbox{So I think that r=1000 works}\)

 Sep 4, 2016
 #2
avatar+118677 
+10

2. If a,b, and c are integers from the set of positive integers less than 7 such that 

\(abc\equiv 1\pmod 7, 5c\equiv 2\pmod 7, 6b\equiv 3+b\pmod 7,\)

 then what is the remainder when a+b+c is divided by 7?

 

5*6=30=2 mod7     so  c=6

 

let ab=x

6x=1 mod 7

x=6

ab=6    (1*6) (2*3) there might be others as well....   6 is already used I don;t know if it can be used twice.

so try 2 and 3

check 2*3*6=36=1mod7  so at least that works

 

If b=2 then    6*2mod7=5mod7       3+2=5 mod7    so that does work

 

S0 a combination that works is

a=3,  b=2,    c=6

a+b+c = 3+2+6 = 11 = 4mod7   The remainder is 4

 Sep 4, 2016
 #3
avatar+118677 
+10
Best Answer

3. What is the smallest integer b>3 for which the base b number 23_b is a perfect square?

 

\(2b+3=x^2\)

 

I just tried them one at a time.

The smallest is    b=11

 

2*11+3=25=5^2

Melody Sep 4, 2016

1 Online Users

avatar