We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
161
1
avatar+283 

1. What is the smallest integer \(n\), greater than \(1\), such that n^(-1) (mod 130) and n^(-1) (mod 231) are both defined?

 

2. What is the unique three-digit positive integer \(x\) satisfying \(100x\equiv1 (mod 997) \)

 Aug 2, 2018
 #1
avatar
0

2)  100x mod 997 = 1

 

100 x - 997 floor((100 x)/997) = 1

 

x = 668

 Aug 3, 2018

17 Online Users

avatar