+0  
 
0
84
1
avatar+217 

1. What is the smallest integer \(n\), greater than \(1\), such that n^(-1) (mod 130) and n^(-1) (mod 231) are both defined?

 

2. What is the unique three-digit positive integer \(x\) satisfying \(100x\equiv1 (mod 997) \)

yasbib555  Aug 2, 2018
 #1
avatar
0

2)  100x mod 997 = 1

 

100 x - 997 floor((100 x)/997) = 1

 

x = 668

Guest Aug 3, 2018

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.