Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2582
2
avatar+249 

1. Let n be a positive integer and a be an integer such that a is its own inverse modulo n . What is the remainder when a^2 is divided by n?

 

2. Find the smallest positive integer that satisfies the system of congruences N2(mod11),N3(mod17).
 

3. Find the smallest positive N such that N6(mod12),N6(mod18),N6(mod24),N6(mod30),N6(mod60).

 

4. How many positive integers less than or equal to 6*7*8*9 solve the system of congruences m5(mod6),m4(mod7),m3(mod8),m3(mod9).

 

5. Find the smallest positive N such that N3(mod4),N2(mod5),N6(mod7).

 

Thank you for all of your help in advance! Sorry for so many problems!

 Aug 28, 2016
 #1
avatar+26397 
0

2. Find the smallest positive integer that satisfies the system of congruences N2(mod11),N3(mod17).

see (a) in

http://web2.0calc.com/questions/find-the-smallest-positive-integer-that-satisfies-the-system-of-congruences

 

laugh

 Aug 29, 2016
 #2
avatar
+2

3. N=6 because clearly 6 == 6 for any mod, and no number under 6 satisfies the conditions.

 Sep 6, 2016

3 Online Users