For how many integers \(a\) satisfying \(1 \le a \le 23\) is it true that \(a^{-1} \equiv a \pmod{24}\)?
i=1;p=0;a=1;m=24;cycle:b=a%m; if(b*i % m==1,goto6, goto8);printa," - ","The mmi = ",i;p=p+i;i++;if(i<=(m-1), goto cycle, 0); i=1;m=24;a++;if(a<=24, goto cycle, 0);print"Total of All mmis =",p
OUTPUT: mmi = Modular Multiplicative Inverse.
1 - The mmi = 1
5 - The mmi = 5
7 - The mmi = 7
11 - The mmi = 11
13 - The mmi = 13
17 - The mmi = 17
19 - The mmi = 19
23 - The mmi = 23