+0  
 
0
503
1
avatar

$${{\mathtt{c}}}^{{\mathtt{2}}} = {{\mathtt{a}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{b}}}^{{\mathtt{2}}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{c}} = {\mathtt{\,-\,}}{\sqrt{{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}}}\\
{\mathtt{c}} = {\sqrt{{{\mathtt{b}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{a}}}^{{\mathtt{2}}}}}\\
\end{array} \right\}$$

 Jan 21, 2015

Best Answer 

 #1
avatar+33665 
+10

I assume you want to find the length of the diagonal of the rectangular roof.  This is done using Pythagoras's theorem with a = 40, b = 20.  So c, the length of the diagonal is:

 

$${\mathtt{c}} = {\sqrt{{{\mathtt{40}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{20}}}^{{\mathtt{2}}}}} \Rightarrow {\mathtt{c}} = {\mathtt{44.721\: \!359\: \!549\: \!995\: \!793\: \!9}}$$

 

or c ≈ 44.7 feet

.

 Jan 21, 2015
 #1
avatar+33665 
+10
Best Answer

I assume you want to find the length of the diagonal of the rectangular roof.  This is done using Pythagoras's theorem with a = 40, b = 20.  So c, the length of the diagonal is:

 

$${\mathtt{c}} = {\sqrt{{{\mathtt{40}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{20}}}^{{\mathtt{2}}}}} \Rightarrow {\mathtt{c}} = {\mathtt{44.721\: \!359\: \!549\: \!995\: \!793\: \!9}}$$

 

or c ≈ 44.7 feet

.

Alan Jan 21, 2015

2 Online Users

avatar