a) ( x + 1) ( 2x^2 - 3) = x * 2x^2 + 1 * 2x^2 - 3*x - 3 * 1 = 2x^3 + 2x^2 - 3x - 3
b) (x + 1) (x^2 - 2x + 3)
We can do this just lke regular multiplication
x^2 - 2x + 3
x + 1
_______________
x^2 - 2x + 3
x^3 - 2x^2 + 3x
________________________
x^3 + x^2 - 2x^2 - 2x + 3x + 3 combine like terms
x^3 - x^2 + x + 3
c) 2 ( x + 3)^3 = 2 ( x + 3) (x + 3) ( x + 3) =
2 [ x^2 + 6x + 9 ] (x + 3) =
[ x^2 + 6x + 9 ] (2) ( x + 3) =
(x^2 + 6x + 9) ( 2x + 6) =
x^2 + 6x + 9
2x + 6
_________________
6x^2 + 36x + 54
2x^3 +12x^2 + 18x
6x^2 + 2x^3 + 12x^2 + 36x + 18x + 54 =
2x^3 + 18x^2 + 54x + 54
d) ( x + 1) (2x - 3)^2 = (x + 1) (2x - 3) (2x - 3) = (x + 1) ( 4x^2 - 12x + 9)
4x^2 - 12x + 9
x + 1
_____________
4x^2 - 12x + 9
4x^3 - 12x^2 + 9x
____________________________
4x^2 + 4x^3 - 12x - 12x^2 + 9 + 9x combine like terms
4x^3 + 4x^2 - 12x^2 - 12x + 9x + 9
4x^3 - 8x^2 - 3x + 9