Simplify the following:
sqrt(50)-2 sqrt(72)+3 sqrt(18)
sqrt(72) = sqrt(2^3×3^2) = 2×3 sqrt(2):
sqrt(50)-2×2×3 sqrt(2)+3 sqrt(18)
2×3 = 6:
sqrt(50)-2×6 sqrt(2)+3 sqrt(18)
sqrt(18) = sqrt(2×3^2) = 3 sqrt(2):
sqrt(50)-2×6 sqrt(2)+3×3 sqrt(2)
sqrt(50) = sqrt(2×5^2) = 5 sqrt(2):
5 sqrt(2)-2×6 sqrt(2)+3×3 sqrt(2)
-2×6 = -12:
5 sqrt(2)+-12 sqrt(2)+3×3 sqrt(2)
3×3 = 9:
5 sqrt(2)-12 sqrt(2)+9 sqrt(2)
Add like terms. 5 sqrt(2)-12 sqrt(2)+9 sqrt(2) = 2 sqrt(2):
Answer: | 2 sqrt(2)
sqrt(50)-2sqrt(72)+3(sqrt(18) =
sqrt(25 * 2) - 2sqrt(36 * 2) + 3sqrt(9 *2) =
5 sqrt(2) - 6 * 2 sqrt(2) + 3*3 sqrt(2) =
5 sqrt(2) - 12 sqrt(2) + 9 sqrt(2) =
[ 5 - 12 + 9]sqrt(2) =
2sqrt(2)
Simplify the following:
sqrt(50)-2 sqrt(72)+3 sqrt(18)
sqrt(72) = sqrt(2^3×3^2) = 2×3 sqrt(2):
sqrt(50)-2×2×3 sqrt(2)+3 sqrt(18)
2×3 = 6:
sqrt(50)-2×6 sqrt(2)+3 sqrt(18)
sqrt(18) = sqrt(2×3^2) = 3 sqrt(2):
sqrt(50)-2×6 sqrt(2)+3×3 sqrt(2)
sqrt(50) = sqrt(2×5^2) = 5 sqrt(2):
5 sqrt(2)-2×6 sqrt(2)+3×3 sqrt(2)
-2×6 = -12:
5 sqrt(2)+-12 sqrt(2)+3×3 sqrt(2)
3×3 = 9:
5 sqrt(2)-12 sqrt(2)+9 sqrt(2)
Add like terms. 5 sqrt(2)-12 sqrt(2)+9 sqrt(2) = 2 sqrt(2):
Answer: | 2 sqrt(2)
sqrt(50)-2sqrt(72)+3(sqrt(18)) = ?
\(\begin{array}{rcll} \sqrt{50}-2\sqrt{72}+3\sqrt{18} &=& \sqrt{50}-2\sqrt{4\cdot18}+3\sqrt{18}\\ &=& \sqrt{50}-2\cdot2\sqrt{18}+3\sqrt{18}\\ &=& \sqrt{50}-4\sqrt{18}+3\sqrt{18}\\ &=& \sqrt{50}-\sqrt{18}\\ &=& \sqrt{2\cdot5^2}-\sqrt{2\cdot3^2}\\ &=& 5\sqrt{2}-3\sqrt{2}\\ &=& 2\sqrt{2}\\ \end{array}\)