+0

# NB!...: ​This is weird...!!!

0
109
5
+78

- Has anyone else here found that the calculator is ironically limited, counting the fact that it is supposed to handle up to 60 digits?

Especially noticeable when working with unknowns like "X".
Example...:
"(100000000000000.1)=(x)" where apparently the calculator figures the answer should be "x=100000000000000".

Where is the ".1"?

Apparently the amount of digits on the left side of the period dictates the amount of decimal spaces on the right side of the period.
Like this...:
"(0.0000000000000001)=(x)" where it answers correctly "x=0.0000000000000001".

If we were to add one more "0"-digit to the decimal space on the right side, then this happens...
"(0.00000000000000001)=(x)" and the calculator spits out this answer, "x=0".

But weirder still...
"(1.0000000000001)=(x)" and for some odd reason the calculator gives this answer, "x=1.000000000000099920072216268437233866881145005276001192933374".

That is just confusing...
What gives? Anyone?

-----

Side note...:

It would make sense if the calculator rounded off at the extremes.
Like this...:
"(100000000000000000000000000000000000000000000000000000000000.1)=(x)"
...and/or...
"(0.000000000000000000000000000000000000000000000000000000000001)=(x)"

H**l...
It would even have made sense with the following, half way in between the two...
"(100000000000000000000000000000.000000000000000000000000000001)=(x)"

But that definitely doesn't seem to be the case here at all, 'cause that last weird error one is just the tip of the iceberg.
There is a lot more of those errors in between the current extremes mentioned above.

And those are just extremely simple examples...
The potential compounding errors make complex equations highly questionable as to the validity of the answers therein...

Anyone else here that thinks this is odd?

By the way...
Thank you to anyone and everyone who took the time to read what I have written.
And an even bigger thank you to that/those person(s) who took the time to reply.

Jan 21, 2020

#1
0

< Has anyone else here found that the calculator is ironically limited... >

I've found that it makes things up.  All of a sudden, starting about two or three weeks ago, I am being blocked from using the calculator.  When I try, there appears a message that people who use AdBlock are not allowed.  This, despite the fact that I do not use AdBlock, have never used AdBlock, and have never used any other ad blocker either.

.

Jan 21, 2020
#2
+78
0

-----

Hi there...

- Most Web-Browsers the last few years have "AD-Blocker"-function in their main code-base, such that people need not use 3rd-party plugins/add-ons which can be a security threat for users.
(The irony is astounding... (x-D) )

So if you take a look in your Web-Browser's settings/options there should be a way to disable this "AD-Blocker"-function.
Or at least a way for you to add "Web2.0Calc" to the "Whitelist", which then excludes it from being filtered by the "Ad-Blocker"-function.

If you can't disable the "Ad-Blocker"-function or add "Web2.0Calc" to the "Whitelist", like f.ex. if a "Whitelist"-function doesn't exist in your current Web-Browser.
Then I would advise you to change over to another Web-Browser.

Kind regards...
BizzyX

-----

BizzyX  Jan 21, 2020
edited by BizzyX  Feb 3, 2020
#3
+1846
+1

Has anyone else here found that the calculator is ironically limited, counting the fact that it is supposed to handle up to 60 digits?

Why ...Yes I have noticed that the calculator is ironically limited!

Just last week, I attempted to calculate the subtended angle of the diameter of a proton at a distance of 13.87786452158657931656064895234587541208515998456324875125489781395482315786541289653245874512458966521447802501478488219650257012045 light-years,

...and this bloody calculator just couldn’t do it with any precise accuracy! What a POS! I may as well use a slide rule. I’m ironically limited in slide rule usage –this amazingly accurate tool is decades before my time, but I have a 350 page book that explains how to use it. So, I best get to reading if I want an accurate answer.

GA

Jan 21, 2020
#4
+78
0

-----

Hi there...

- Something tells me that you are being sarcastic...

NB!...: I'm serious...!!!

Just look at this...:
----------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (0.1)=(x) , x=(0.1)
Nr.2. (0.01)=(x) , x=(0.01)
Nr.3. (0.001)=(x) , x=(0.001)
Nr.4. (0.0001)=(x) , x=(0.0001)
Nr.5. (0.00001)=(x) , x=(0.00001)
Nr.6. (0.000001)=(x) , x=(0.000001)
Nr.7. (0.0000001)=(x) , x=(0.0000001)
Nr.8. (0.00000001)=(x) , x=(0.00000001)
Nr.9. (0.000000001)=(x) , x=(0.000000001)
Nr.10. (0.0000000001)=(x) , x=(0.0000000001)
Nr.11. (0.00000000001)=(x) , x=(0.00000000001)
Nr.12. (0.000000000001)=(x) , x=(0.000000000001)
Nr.13. (0.0000000000001)=(x) , x=(0.0000000000001)
Nr.14. (0.00000000000001)=(x) , x=(0.00000000000001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.15. (0.000000000000001)=(x) , x=(0.000000000000001000000000000001000000000000001000000000000001)
Nr.16. (0.0000000000000001)=(x) , x=(0.0000000000000001)
Nr.17. (0.00000000000000001)=(x) , x=(0)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (1.1)=(x) , x=(1.1)
Nr.2. (1.01)=(x) , x=(1.01)
Nr.3. (1.001)=(x) , x=(1.001)
Nr.4. (1.0001)=(x) , x=(1.0001)
Nr.5. (1.00001)=(x) , x=(1.00001)
Nr.6. (1.000001)=(x) , x=(1.000001)
Nr.7. (1.0000001)=(x) , x=(1.0000001)
Nr.8. (1.00000001)=(x) , x=(1.00000001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.9. (1.000000001)=(x) , x=(1.000000001000000083000006889000571787047458324939040969940401)
Nr.10. (1.0000000001)=(x) , x=(1.000000000100000008280000685584056766359900254599741080858561)
Nr.11. (1.00000000001)=(x) , x=(1.00000000001000000082750006847563066635843764116071480604915)
Nr.12. (1.000000000001)=(x) , x=(1.000000000001000088900582611041856908252751101162755308435551)
Nr.13. (1.0000000000001)=(x) , x=(1.000000000000099920072216268437233866881145005276001192933374)
Nr.14. (1.00000000000001)=(x) , x=(1.00000000000000999200722162644436255341995847474320207467171)
Nr.15. (1.000000000000001)=(x) , x=(1)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (10.1)=(x) , x=(10.1)
Nr.2. (10.01)=(x) , x=(10.01)
Nr.3. (10.001)=(x) , x=(10.001)
Nr.4. (10.0001)=(x) , x=(10.0001)
Nr.5. (10.00001)=(x) , x=(10.00001)
Nr.6. (10.000001)=(x) , x=(10.000001)
Nr.7. (10.0000001)=(x) , x=(10.0000001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.8. (10.00000001)=(x) , x=(10.000000010000000900000081000007290000656100059049005314410478)
Nr.9. (10.000000001)=(x) , x=(10.000000001000000083000006889000571787047458324939040969940401)
Nr.10. (10.0000000001)=(x) , x=(10.000000000100000008280000685584056766359900254599741080858561)
Nr.11. (10.00000000001)=(x) , x=(10.00000000000999911264904615907617648764224245910671876622973)
Nr.12. (10.000000000001)=(x) , x=(10.000000000001000088900582611041856908252751101162755308435551)
Nr.13. (10.0000000000001)=(x) , x=(10.000000000000099475983006416853299441709647604154773422567477)
Nr.14. (10.00000000000001)=(x) , x=(10)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (100.1)=(x) , x=(100.1)
Nr.2. (100.01)=(x) , x=(100.01)
Nr.3. (100.001)=(x) , x=(100.001)
Nr.4. (100.0001)=(x) , x=(100.0001)
Nr.5. (100.00001)=(x) , x=(100.00001)
Nr.6. (100.000001)=(x) , x=(100.000001)
Nr.7. (100.0000001)=(x) , x=(100.0000001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.8. (100.00000001)=(x) , x=(100.000000009999993800003843997616721477632683867736002003678758)
Nr.9. (100.000000001)=(x) , x=(100.000000001000003636013220544069898238149993913377869041931836)
Nr.10. (100.0000000001)=(x) , x=(100.000000000100001784631848539969044287564355873494918390313594)
Nr.11. (100.00000000001)=(x) , x=(100.000000000010004441719511309603803521267403815292043331114921)
Nr.12. (100.000000000001)=(x) , x=(100.000000000000994759830064762261266123026921032269075120175044)
Nr.13. (100.0000000000001)=(x) , x=(100)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (1000.1)=(x) , x=(1000.1)
Nr.2. (1000.01)=(x) , x=(1000.01)
Nr.3. (1000.001)=(x) , x=(1000.001)
Nr.4. (1000.0001)=(x) , x=(1000.0001)
Nr.5. (1000.00001)=(x) , x=(1000.00001)
Nr.6. (1000.000001)=(x) , x=(1000.000001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.7. (1000.0000001)=(x) , x=(1000.000000099999970000008999997300000809999757000072899978130007)
Nr.8. (1000.00000001)=(x) , x=(1000.000000010000008000006400005120004096003276802621442097153678)
Nr.9. (1000.000000001)=(x) , x=(1000.000000000999989425111829442403646581437401299481257985696801)
Nr.10. (1000.0000000001)=(x) , x=(1000.000000000100044417200117538744240466412227275322115681245158)
Nr.11. (1000.00000000001)=(x) , x=(1000.000000000010004441719511309603803521267403815292043331114921)
Nr.12. (1000.000000000001)=(x) , x=(1000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (10000.1)=(x) , x=(10000.1)
Nr.2. (10000.01)=(x) , x=(10000.01)
Nr.3. (10000.001)=(x) , x=(10000.001)
Nr.4. (10000.0001)=(x) , x=(10000.0001)
Nr.5. (10000.00001)=(x) , x=(10000.00001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.6. (10000.000001)=(x) , x=(10000.000001000001000001000001000001000001000001000001000001000001)
Nr.7. (10000.0000001)=(x) , x=(10000.00000010000077000592904565365153311680499939849536841433679)
Nr.8. (10000.00000001)=(x) , x=(10000.000000010000803764598560786330397374036951349779981817138643)
Nr.9. (10000.000000001)=(x) , x=(10000.000000001000444172201353095740681469055223792983489844903891)
Nr.10. (10000.0000000001)=(x) , x=(10000.000000000100044417200117538744240466412227275322115681245158)
Nr.11. (10000.00000000001)=(x) , x=(10000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (100000.1)=(x) , x=(100000.1)
Nr.2. (100000.01)=(x) , x=(100000.01)
Nr.3. (100000.001)=(x) , x=(100000.001)
Nr.4. (100000.0001)=(x) , x=(100000.0001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.5. (100000.00001)=(x) , x=(100000.000010000100001000010000100001000010000100001000010000100001)
Nr.6. (100000.000001)=(x) , x=(100000.000000999994000035999784001295992224046655720065679605922364)
Nr.7. (100000.0000001)=(x) , x=(100000.00000010000077000592904565365153311680499939849536841433679)
Nr.8. (100000.00000001)=(x) , x=(100000.000000009997165803494709249927645512497207041803648665603301)
Nr.9. (100000.000000001)=(x) , x=(100000.00000000100408215121026364340677061330075796304042883063453)
Nr.10. (100000.0000000001)=(x) , x=(100000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (1000000.1)=(x) , x=(1000000.1)
Nr.2. (1000000.01)=(x) , x=(1000000.01)
Nr.3. (1000000.001)=(x) , x=(1000000.001)
Nr.4. (1000000.0001)=(x) , x=(1000000.0001)
Nr.5. (1000000.00001)=(x) , x=(1000000.00001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.6. (1000000.000001)=(x) , x=(1000000.000001000008000064000512004096032768262146097168777350218802)
Nr.7. (1000000.0000001)=(x) , x=(1000000.00000010000077000592904565365153311680499939849536841433679)
Nr.8. (1000000.00000001)=(x) , x=(1000000.000000010011717714412948915410596562216418095739253221970995)
Nr.9. (1000000.000000001)=(x) , x=(1000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (10000000.1)=(x) , x=(10000000.1)
Nr.2. (10000000.01)=(x) , x=(10000000.01)
Nr.3. (10000000.001)=(x) , x=(10000000.001)
Nr.4. (10000000.0001)=(x) , x=(10000000.0001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.5. (10000000.00001)=(x) , x=(10000000.000010000600036002160129607776466587995279716783006980418825)
Nr.6. (10000000.000001)=(x) , x=(10000000.000001000241058095000895215746995025801218093560548092090194)
Nr.7. (10000000.0000001)=(x) , x=(10000000.000000100582847425979322379391862022863889379789063687349082)
Nr.8. (10000000.00000001)=(x) , x=(10000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (100000000.1)=(x) , x=(100000000.1)
Nr.2. (100000000.01)=(x) , x=(100000000.01)
Nr.3. (100000000.001)=(x) , x=(100000000.001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.4. (100000000.0001)=(x) , x=(100000000.000100010001000100010001000100010001000100010001000100010001)
Nr.5. (100000000.00001)=(x) , x=(100000000.000009998700168978032855728755261815963924689790327257456531)
Nr.6. (100000000.000001)=(x) , x=(100000000.000000998378633099845850339049383800707650775141170738720318)
Nr.7. (100000000.0000001)=(x) , x=(100000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (1000000000.1)=(x) , x=(1000000000.1)
Nr.2. (1000000000.01)=(x) , x=(1000000000.01) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.3. (1000000000.001)=(x) , x=(1000000000.001001001001001001001001001001001001001001001001001001001001)
Nr.4. (1000000000.0001)=(x) , x=(1000000000.000100020004000800160032006401280256051210242048409681936387)
Nr.5. (1000000000.00001)=(x) , x=(1000000000.000010013618521188816790835536329407994873027317151325803092)
Nr.6. (1000000000.000001)=(x) , x=(1000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (10000000000.1)=(x) , x=(10000000000.1)
Nr.2. (10000000000.01)=(x) , x=(10000000000.01)
Nr.3. (10000000000.001)=(x) , x=(10000000000.001) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.4. (10000000000.0001)=(x) , x=(10000000000.000099186669311644514977187066058321761555246974806585994842)
Nr.5. (10000000000.00001)=(x) , x=(10000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (100000000000.1)=(x) , x=(100000000000.1)
Nr.2. (100000000000.01)=(x) , x=(100000000000.01) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.3. (100000000000.001)=(x) , x=(100000000000.001008064516129032258064516129032258064516129032258064516129)
Nr.4. (100000000000.0001)=(x) , x=(100000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (1000000000000.1)=(x) , x=(1000000000000.1) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.2. (1000000000000.01)=(x) , x=(1000000000000.010101010101010101010101010101010101010101010101010101010101)
Nr.3. (1000000000000.001)=(x) , x=(1000000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (10000000000000.1)=(x) , x=(10000000000000.1) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.2. (10000000000000.01)=(x) , x=(10000000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.1. (100000000000000.1)=(x) , x=(100000000000000)
--------------------------------------------------------------------------------------------------------------------------------------------------

----------------------------------

---------------------------------------------------------------------------------------------------------------
There are three important aspects of a calculator/instrument...:
---------------------------------------------------------------------------------------------------------------
Nr.1. "Resolution" = A way to display results accurately with the amount of digits required for the specific situation, and with as little rounding off as possible.
Nr.2. "Accuracy" = How close to the absolute value, the result is for a given calculation/measurement. Closely related to the resolution mentioned above.
Nr.3. "Precision" = The repeatability of accuracy.
---------------------------------------------------------------------------------------------------------------

This calculator doesn't just struggle with resolution and accuracy.
But the calculator even has trouble with "Precision".
Especially when working with decimals...
Whole-numbers, or Natural-numbers, seem to be unaffected, but I might be wrong.

As you can clearly see something is going on with this calculator which makes me question the validity of the results it spits out.

So please spare me your sarcasm...

As an example...:
I've seen many times online that people define "1 inch equals 2.5cm" which at first glance doesn't seem that bad, but in reality equals an error of "25.344000 Meters pr. international land-mile".
That's a pretty big difference, so way less accurate in comparison.

Kind regards

BizzyX

-----

BizzyX  Jan 22, 2020
edited by BizzyX  Feb 3, 2020
edited by BizzyX  Feb 3, 2020
#5
+78
+1

-----

Hi there...

I'm seriously starting to feel like the boy who cried wolf.
But anyway, here is more proof to prove my point...

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (1.1)=(x) , x=(1.1)
Nr.02. = (1.11)=(x) , x=(1.11)
Nr.03. = (1.111)=(x) , x=(1.111)
Nr.04. = (1.1111)=(x) , x=(1.1111)
Nr.05. = (1.11111)=(x) , x=(1.11111)
Nr.06. = (1.111111)=(x) , x=(1.111111)
Nr.07. = (1.1111111)=(x) , x=(1.1111111) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (1.11111111)=(x) , x=(1.111111109999999899999990999999189999927099993438999409509947)
Nr.09. = (1.111111111)=(x) , x=(1.111111111000000033999989596003183623025811354101725644871953)
Nr.10. = (1.1111111111)=(x) , x=(1.111111111100000042939834054717312139475505782960351171426863)
Nr.11. = (1.11111111111)=(x) , x=(1.111111111110000054733903646988672615840246218900933056468895)
Nr.12. = (1.111111111111)=(x) , x=(1.111111111110999924331163114504424459963040074298586753464506)
Nr.13. = (1.1111111111111)=(x) , x=(1.111111111111100058224110397027914373688492606069121342691441)
Nr.14. = (1.11111111111111)=(x) , x=(1.111111111111111111111111111111111111111111111111111111111111)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (2.2)=(x) , x=(2.2)
Nr.02. = (2.22)=(x) , x=(2.22)
Nr.03. = (2.222)=(x) , x=(2.222)
Nr.04. = (2.2222)=(x) , x=(2.2222)
Nr.05. = (2.22222)=(x) , x=(2.22222)
Nr.06. = (2.222222)=(x) , x=(2.222222)
Nr.07. = (2.2222222)=(x) , x=(2.2222222) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (2.22222222)=(x) , x=(2.222222219999999599999927999987039997667199580095924417266395)
Nr.09. = (2.222222222)=(x) , x=(2.222222222000000067999979192006367246051622708203451289743905)
Nr.10. = (2.2222222222)=(x) , x=(2.222222222200000085879668109434624278951011565920702342853726)
Nr.11. = (2.22222222222)=(x) , x=(2.22222222222000010946780729397734523168049243780186611293779)
Nr.12. = (2.222222222222)=(x) , x=(2.222222222221999848662326229008848919926080148597173506929012)
Nr.13. = (2.2222222222222)=(x) , x=(2.222222222222200116448220813846771137549073306993425803191007)
Nr.14. = (2.22222222222222)=(x) , x=(2.222222222222222222222222222222222222222222222222222222222222)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (3.3)=(x) , x=(3.3)
Nr.02. = (3.33)=(x) , x=(3.33)
Nr.03. = (3.333)=(x) , x=(3.333)
Nr.04. = (3.3333)=(x) , x=(3.3333)
Nr.05. = (3.33333)=(x) , x=(3.33333)
Nr.06. = (3.333333)=(x) , x=(3.333333)
Nr.07. = (3.3333333)=(x) , x=(3.3333333) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (3.33333333)=(x) , x=(3.333333329999999799999987999999279999956799997407999844479991)
Nr.09. = (3.333333333)=(x) , x=(3.333333333000000119999956800015551994401282015538474406149214)
Nr.10. = (3.3333333333)=(x) , x=(3.33333333330000014526936690157210625860371437915236421608151)
Nr.11. = (3.33333333333)=(x) , x=(3.333333333330000147753950340726203737731783264851668165525808)
Nr.12. = (3.333333333333)=(x) , x=(3.333333333332999970366472796378650719760884823291352809948811)
Nr.13. = (3.3333333333333)=(x) , x=(3.333333333333300174672331191083743121065477818207364028074322)
Nr.14. = (3.33333333333333)=(x) , x=(3.333333333333333333333333333333333333333333333333333333333333)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (4.4)=(x) , x=(4.4)
Nr.02. = (4.44)=(x) , x=(4.44)
Nr.03. = (4.444)=(x) , x=(4.444)
Nr.04. = (4.4444)=(x) , x=(4.4444)
Nr.05. = (4.44444)=(x) , x=(4.44444)
Nr.06. = (4.444444)=(x) , x=(4.444444)
Nr.07. = (4.4444444)=(x) , x=(4.4444444) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (4.44444444)=(x) , x=(4.444444439999998399999423999792639925350373126134325408357147)
Nr.09. = (4.444444444)=(x) , x=(4.444444444000000127999963136010616828942353264602259794549179)
Nr.10. = (4.4444444444)=(x) , x=(4.444444444400000171839335600392834641144143480283647831304025)
Nr.11. = (4.44444444444)=(x) , x=(4.444444444440000218936414509139666511511883408706210896887841)
Nr.12. = (4.444444444444)=(x) , x=(4.444444444443999697324652458017697839852160297194347013858024)
Nr.13. = (4.4444444444444)=(x) , x=(4.444444444444400232896441706857311835573876860928474772052722)
Nr.14. = (4.44444444444444)=(x) , x=(4.444444444444444444444444444444444444444444444444444444444444)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (5.5)=(x) , x=(5.5)
Nr.02. = (5.55)=(x) , x=(5.55)
Nr.03. = (5.555)=(x) , x=(5.555)
Nr.04. = (5.5555)=(x) , x=(5.5555)
Nr.05. = (5.55555)=(x) , x=(5.55555)
Nr.06. = (5.555555)=(x) , x=(5.555555)
Nr.07. = (5.5555555)=(x) , x=(5.5555555)
Nr.08. = (5.55555555)=(x) , x=(5.55555555) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.09. = (5.555555555)=(x) , x=(5.555555554999999724999863874932618091645955364747905550213247)
Nr.10. = (5.5555555555)=(x) , x=(5.555555555499999797999265525329450097880555893701229497670454)
Nr.11. = (5.55555555555)=(x) , x=(5.555555555549999856991318827838815516166320085628692159602011)
Nr.12. = (5.555555555555)=(x) , x=(5.555555555555000235705080161396932197211516024862172170290504)
Nr.13. = (5.5555555555555)=(x) , x=(5.555555555555500291120551985139571868442463030345606713457203)
Nr.14. = (5.55555555555555)=(x) , x=(5.555555555555555555555555555555555555555555555555555555555556)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (6.6)=(x) , x=(6.6)
Nr.02. = (6.66)=(x) , x=(6.66)
Nr.03. = (6.666)=(x) , x=(6.666)
Nr.04. = (6.6666)=(x) , x=(6.6666)
Nr.05. = (6.66666)=(x) , x=(6.66666)
Nr.06. = (6.666666)=(x) , x=(6.666666)
Nr.07. = (6.6666666)=(x) , x=(6.6666666) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (6.66666666)=(x) , x=(6.666666659999999599999975999998559999913599994815999688959981)
Nr.09. = (6.666666666)=(x) , x=(6.666666666000000239999913600031103988802564031076948812298428)
Nr.10. = (6.6666666666)=(x) , x=(6.666666666600000290558733628815352171169097176606865476637507)
Nr.11. = (6.66666666666)=(x) , x=(6.666666666660000295508100663722320397511401443044780451224098)
Nr.12. = (6.666666666666)=(x) , x=(6.666666666665999940732947593112919566590446985028535318440817)
Nr.13. = (6.6666666666666)=(x) , x=(6.666666666666600349344662401958428632314856071963223225326607)
Nr.14. = (6.66666666666666)=(x) , x=(6.666666666666666666666666666666666666666666666666666666666667)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (7.7)=(x) , x=(7.7)
Nr.02. = (7.77)=(x) , x=(7.77)
Nr.03. = (7.777)=(x) , x=(7.777)
Nr.04. = (7.7777)=(x) , x=(7.7777)
Nr.05. = (7.77777)=(x) , x=(7.77777)
Nr.06. = (7.777777)=(x) , x=(7.777777)
Nr.07. = (7.7777777)=(x) , x=(7.7777777) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (7.77777777)=(x) , x=(7.777777769999999299999936999994329999489699954072995866569628)
Nr.09. = (7.777777777)=(x) , x=(7.777777776999999831999963711992161790306946706300488560905529)
Nr.10. = (7.7777777777)=(x) , x=(7.777777777699999840119671349996427052655449438541865866659476)
Nr.11. = (7.77777777777)=(x) , x=(7.777777777769999856810263909892220416502657118121933487627463)
Nr.12. = (7.777777777777)=(x) , x=(7.777777777776999579969779793322925192433322629789790523087688)
Nr.13. = (7.7777777777777)=(x) , x=(7.77777777777770034177777877372739638896828809824198768928826)
Nr.14. = (7.77777777777777)=(x) , x=(7.777777777777777777777777777777777777777777777777777777777778)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (8.8)=(x) , x=(8.8)
Nr.02. = (8.88)=(x) , x=(8.88)
Nr.03. = (8.888)=(x) , x=(8.888)
Nr.04. = (8.8888)=(x) , x=(8.8888)
Nr.05. = (8.88888)=(x) , x=(8.88888)
Nr.06. = (8.888888)=(x) , x=(8.888888)
Nr.07. = (8.8888888)=(x) , x=(8.8888888) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (8.88888888)=(x) , x=(8.888888879999993599995391996682237611211080071977651823909313)
Nr.09. = (8.888888888)=(x) , x=(8.888888888000000255999926272021233657884706529204519589098358)
Nr.10. = (8.8888888888)=(x) , x=(8.88888888880000034367867120078566928228828696056729566260805)
Nr.11. = (8.88888888888)=(x) , x=(8.888888888880000437872829018279333023023766817412421793775683)
Nr.12. = (8.888888888888)=(x) , x=(8.888888888887999394649336959635485774688130313806357927256895)
Nr.13. = (8.8888888888888)=(x) , x=(8.88888888888880046579288373036970191134969764980122776329503)
Nr.14. = (8.88888888888888)=(x) , x=(8.888888888888888888888888888888888888888888888888888888888889)
--------------------------------------------------------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------------------------------------------------
Nr.01. = (9.9)=(x) , x=(9.9)
Nr.02. = (9.99)=(x) , x=(9.99)
Nr.03. = (9.999)=(x) , x=(9.999)
Nr.04. = (9.9999)=(x) , x=(9.9999)
Nr.05. = (9.99999)=(x) , x=(9.99999)
Nr.06. = (9.999999)=(x) , x=(9.999999)
Nr.07. = (9.9999999)=(x) , x=(9.9999999) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (9.99999999)=(x) , x=(9.99999998999999919999993599999487999959039996723199737855979)
Nr.09. = (9.999999999)=(x) , x=(9.999999998999999917999993275999448631954787820292601263993304)
Nr.10. = (9.9999999999)=(x) , x=(9.999999999899999991729999316070943439067022410842753376695704)
Nr.11. = (9.99999999999)=(x) , x=(9.9999999999900008873510538231775908275207451430641839579843)
Nr.12. = (9.999999999999)=(x) , x=(9.999999999998999911099418389135952159282654469874058429846432)
Nr.13. = (9.9999999999999)=(x) , x=(9.999999999999900524016993593042171753382302613619473966180804)
Nr.14. = (9.99999999999999)=(x) , x=(10)
--------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------
To summarize...:
------------------------------

Nr.07. = (1.1111111)=(x) , x=(1.1111111) <<--(The highest/lowest value before the calculator starts acting up.)

Nr.07. = (2.2222222)=(x) , x=(2.2222222) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (3.3333333)=(x) , x=(3.3333333) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (4.4444444)=(x) , x=(4.4444444) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.08. = (5.55555555)=(x) , x=(5.55555555) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (6.6666666)=(x) , x=(6.6666666) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (7.7777777)=(x) , x=(7.7777777) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (8.8888888)=(x) , x=(8.8888888) <<--(The highest/lowest value before the calculator starts acting up.)
Nr.07. = (9.9999999)=(x) , x=(9.9999999) <<--(The highest/lowest value before the calculator starts acting up.)
------------------------------

Pretty much on average that means 8 digits or 1 Whole/Natural single digit number followed by 7 decimals.
Out of 60 digits or 1 Whole/Natural single digit number followed by 59 decimals, functionality claimed by the maker(s) of this calculator.
That's a huge discrepancy...
One which I really wish that they would fix.
But I'm getting the feeling that they don't seem to care.

Seeing that when I tried to make them aware of this before, they just quoted me their disclaimer.
Which in turn makes the "Report a problem"-function a simple gimmick and as such pretty useless.

Logically...
With a function like "Report a problem", one would naturally expect them to want feedback.
Especially when something clearly seem to be wrong somewhere/somehow.

Kind regards

BizzyX

-----

BizzyX  Jan 28, 2020
edited by BizzyX  Jan 30, 2020
edited by BizzyX  Feb 3, 2020