f(x)=(cos x-1)(sinx-1) emergency! what is the differential value of this equation?
Find the derivative of the following via implicit differentiation:
d/dx(f(x)) = d/dx((-1+cos(x)) (-1+sin(x)))
The derivative of f(x) is f'(x):
f'(x) = d/dx((-1+cos(x)) (-1+sin(x)))
Use the product rule, d/dx(u v) = v ( du)/( dx)+u ( dv)/( dx), where u = cos(x)-1 and v = sin(x)-1:
f'(x) = (-1+cos(x)) (d/dx(-1+sin(x)))+(d/dx(-1+cos(x))) (-1+sin(x))
Differentiate the sum term by term:
f'(x) = (d/dx(-1+cos(x))) (-1+sin(x))+(-1+cos(x)) d/dx(-1)+d/dx(sin(x))
The derivative of -1 is zero:
f'(x) = (d/dx(-1+cos(x))) (-1+sin(x))+(-1+cos(x)) (d/dx(sin(x))+0)
Simplify the expression:
f'(x) = (-1+cos(x)) (d/dx(sin(x)))+(d/dx(-1+cos(x))) (-1+sin(x))
The derivative of sin(x) is cos(x):
f'(x) = (d/dx(-1+cos(x))) (-1+sin(x))+(-1+cos(x)) cos(x)
Differentiate the sum term by term:
f'(x) = (-1+cos(x)) cos(x)+(-1+sin(x)) d/dx(-1)+d/dx(cos(x))
The derivative of -1 is zero:
f'(x) = (-1+cos(x)) cos(x)+(-1+sin(x)) (d/dx(cos(x))+0)
Simplify the expression:
f'(x) = (-1+cos(x)) cos(x)+(d/dx(cos(x))) (-1+sin(x))
The derivative of cos(x) is -sin(x):
f'(x) = (-1+cos(x)) cos(x)+(-1+sin(x)) -sin(x)
Expand the left hand side:
Answer: | f'(x) = (-1+cos(x)) cos(x)-(-1+sin(x)) sin(x)