We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
202
1
avatar

In the diagram, $P$ is on $RS$ so that $QP$ bisects $\angle SQR$. Also, $PQ=PR$, $\angle RSQ=2y^\circ$, and $\angle RPQ=3y^\circ$. What is the measure, in degrees, of $\angle RPQ$?

 Oct 14, 2018
 #1
avatar+100439 
+1

By the exteriror angle theorem, 3y = 2y + x  ⇒ 3y - 2y  = x ⇒  y  = x

 

And in triangle PQR, since PQ  = RQ, then angle PQR  = angle PRQ  = x

 

So

 

3y  + x  +  x =  180

 

And since  y = x

 

3x + x + x  = 180

 

5x  = 180

 

x = 36

 

So 3x  = 3y  =  3(36)   = 108°

 

 

cool cool cool

 Oct 14, 2018

13 Online Users

avatar