+0

# Need help ASAP...

0
302
5
+256

Which answer best describes the complex zeros of the polynomial function?

f(x)=x^3+x^2−8x−8

A) The function has one real zero and two nonreal zeros. The graph of the function intersects the x-axis at exactly one location.

B) The function has one real zero and two nonreal zeros. The graph of the function intersects the x-axis at exactly two locations.

C) The function has three real zeros. The graph of the function intersects the x-axis at exactly three locations.

D) The function has two real zeros and one nonreal zero. The graph of the function intersects the x-axis at exactly one location.

Oct 26, 2018

#1
+103049
+2

x^3 + x^2 - 8x  - 8  = 0

Factor  as

x^2  ( x + 1)  - 8 (x  + 1)   = 0

(x + 1)  ( x^2 - 8)  = 0

So either                                            or

x + 1  = 0                                       x^2 -  8  =  0

And x  =  -1                                    ( x - √8) ( x + √8)  = 0

x - √8  = 0          or   x + √8  = 0

And  x = √8                x  = - √8

So

C) The function has three real zeros. The graph of the function intersects the x-axis at exactly three locations.

Oct 26, 2018
#2
+75
+1

Gosh that's complicated : x

Oct 26, 2018
#3
+103049
0

HAHAHA!!!!!....not too hard,  MJ  !!!!!

CPhill  Oct 26, 2018
#4
+75
0

How does it work....?

Sincerelyrose  Oct 26, 2018
#5
+103049
0

Simple...

"Magic"   !!!!

[ As my Algebra 2 teacher used to say..... ]

CPhill  Oct 26, 2018