+0  
 
0
52
5
avatar+180 

Which answer best describes the complex zeros of the polynomial function?

f(x)=x^3+x^2−8x−8

 

A) The function has one real zero and two nonreal zeros. The graph of the function intersects the x-axis at exactly one location.

B) The function has one real zero and two nonreal zeros. The graph of the function intersects the x-axis at exactly two locations.

C) The function has three real zeros. The graph of the function intersects the x-axis at exactly three locations.

D) The function has two real zeros and one nonreal zero. The graph of the function intersects the x-axis at exactly one location.

oscar.a1551  Oct 26, 2018
 #1
avatar+90995 
+2

x^3 + x^2 - 8x  - 8  = 0

 

Factor  as

 

x^2  ( x + 1)  - 8 (x  + 1)   = 0

 

(x + 1)  ( x^2 - 8)  = 0

 

So either                                            or

 

x + 1  = 0                                       x^2 -  8  =  0 

And x  =  -1                                    ( x - √8) ( x + √8)  = 0

                                                        x - √8  = 0          or   x + √8  = 0      

                                                       And  x = √8                x  = - √8

 

So

 

C) The function has three real zeros. The graph of the function intersects the x-axis at exactly three locations.

 

 

 

cool cool cool

CPhill  Oct 26, 2018
 #2
avatar+68 
+1

Gosh that's complicated : x

Sincerelyrose  Oct 26, 2018
 #3
avatar+90995 
0

HAHAHA!!!!!....not too hard,  MJ  !!!!!

 

cool cool cool

CPhill  Oct 26, 2018
 #4
avatar+68 
0

How does it work....? 

Sincerelyrose  Oct 26, 2018
 #5
avatar+90995 
0

Simple...

 

"Magic"   !!!!

 

[ As my Algebra 2 teacher used to say..... ] 

 

cool cool cool

CPhill  Oct 26, 2018

20 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.