We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
114
1
avatar

For a certain hyperbola \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,\]where $a > b,$ the angle between the asymptotes is $60^\circ.$ Find $\frac{a}{b}.$

 Aug 4, 2019
 #1
avatar+8652 
+1

For a certain hyperbola \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1,\]where a > b, the angle between the asymptotes is \( 60^\circ\). Find \(\frac{a}{b}\).

 

Hello Guest!

 

\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)

\(y=b\cdot \sqrt{\frac{x^2}{a^2}-1}\)

 

For \(x→(-\ ∞)\) the following applies:

 

\(y\ '=\pm\ tan(30°)\)

 

\(y\ '=b\cdot \frac{1}{2}\cdot \frac{1}{\sqrt{\frac{x^2-a^2}{a^2}}}\cdot\frac{2x}{a^2}\\ y\ '=b\cdot \frac{1}{2}\cdot \sqrt{\frac{a^2}{x^2-a^2}}\cdot\frac{2x}{a^2}\\ y\ '=\frac{bx}{a^2}\cdot \sqrt{\frac{a^2}{x^2-a^2}}\\ y\ '=\frac{b}{a}\cdot \sqrt{\frac{x^2}{x^2-a^2}}\\\)

\(For\ x→(-\ ∞)\ the\ following\ applies:\)

\(y\ '=\frac{b}{a}\cdot \sqrt{\frac{x^2}{x^2-a^2}}=tan(30°)\)

\(For\ x→(-\ ∞):\\ \sqrt{\frac{x^2}{x^2-a^2}}=1\)

\(\frac{b}{a}=tan(30°)\)

\(\frac{b}{a}= \frac{1}{3}\sqrt{3}\\ \frac{a}{b}=\pm \sqrt{3}\)

\(\color{BrickRed}a>b\\ \color{blue} \frac{a}{b}=\sqrt{3}\)

 

laugh  !

 Aug 5, 2019
edited by asinus  Aug 5, 2019
edited by asinus  Aug 5, 2019
edited by asinus  Aug 5, 2019

3 Online Users