+0  
 
0
32
3
avatar+6 

 

 

1. 

(a) The line 𝑥 + 2𝑦 = 0 meets the circle x2 + y2 − 4𝑥 + 2𝑦 = 0 at A and B. Find the length of AB.
(b) The circle 𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 𝑘 = 0 touches the x-axis. Find k and the
coordinates of the point of contact. Find the coordinates of the centre and the radius of the circle.

 

Thanks 

nmikho  May 14, 2018
Sort: 

3+0 Answers

 #1
avatar+19344 
0

1. 

(a) The line 𝑥 + 2𝑦 = 0 meets the circle x2 + y2 − 4𝑥 + 2𝑦 = 0 at A and B. Find the length of AB.

 

\(\begin{array}{|rclrcl|} \hline x+2y &=& 0 \\ x &=& -2y \\\\ x^2 + y^2 - 4x + 2y &=& 0 \quad & | \quad x=-2y \\ (-2y)^2 + y^2 - 4(-2y) + 2y &=& 0 \\ 4y^2 + y^2 + 8y + 2y &=& 0 \\ 5y^2 + 10y &=& 0 \\ 5y(y+2) &=& 0 \\\\ 5y &=& 0 & y+2 &=& 0 \\ y &=& 0 & y &=& -2 \\\\ x &=& -2\cdot 0 & x&=& -2(-2) \\ x &=& 0 & x&=& 4 \\\\ & & A(0,0) &&& B(4,-2) \\ \hline \end{array} \)

 

 

\(\begin{array}{|rcll|} \hline AB &=& \sqrt{(0-4)^2+(0-(-2))^2} \\ &=& \sqrt{16+(0+2)^2} \\ &=& \sqrt{16+4} \\ &=& \sqrt{20} \\ &=& \sqrt{4\cdot 5} \\ &=& 2\sqrt{ 5} \\ \hline \end{array}\)

 

 

laugh

 
heureka  May 14, 2018
edited by heureka  May 14, 2018
 #2
avatar+19344 
0

(b) The circle 𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 𝑘 = 0 touches the x-axis. Find k and the
coordinates of the point of contact. Find the coordinates of the centre and the radius of the circle.

 

\(k=\ ?\)

\(\begin{array}{|rcll|} \hline x^2+y^2-4x-6y +k &=& 0 \quad & | \quad y = 0 (\text{ circle touches the x-axis} ) \\ x^2 -4x +k &=& 0 \\ x &=& \frac{4\pm \sqrt{16-4k} }{2} \quad & | \quad \text{ only one solution for x} \\ 16-4k &=& 0 \\ 4k &=& 16 \\ k &=& 4 \\\\ x &=& \frac{4\pm 0 }{2}\\ x &=& 2 \\ \hline \end{array} \)

 

\( k = 4\\\text{The coordinates of the point of contact is $ (2,0)$}\)


\(\text{Coordinates of the centre $(c_x, cr_y)$ and the radius $r$ of the circle.} \)
\(\begin{array}{|rcll|} \hline x^2+y^2-4x-6y +k &=& 0 \\ x^2-4x+y^2-6y +k &=& 0 \\ (x-2)^2-4+(y-3)^2 -9 +k &=& 0 \\ (x-2)^2 +(y-3)^2 &=& 4+9-k \quad & | \quad k = 4 \\ (x-2)^2 +(y-3)^2 &=& 4+9-4 \\ (x-2)^2 +(y-3)^2 &=& 9 \\ (x-\underbrace{2}_{=\text{c_x}})^2+(y-\underbrace{3}_{=\text{c_y}})^2 &=& \underbrace{9}_{=r^2} \\\\ c_x &=& 2 \\ c_y &=& 3 \\ r &=& \sqrt{9} = 3 \\ \hline \end{array}\)


\(\text{The coordinates of the centre $(2,3)$} \\ \text{Radius of the circle $r = 3$ } \)

 

 

laugh

 
heureka  May 14, 2018
 #3
avatar+6 
0

Thank you so much, you're awsome :) 

 
nmikho  May 15, 2018

22 Online Users

New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy