+0  
 
0
65
3
avatar+6 

 

 

1. 

(a) The line 𝑥 + 2𝑦 = 0 meets the circle x2 + y2 − 4𝑥 + 2𝑦 = 0 at A and B. Find the length of AB.
(b) The circle 𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 𝑘 = 0 touches the x-axis. Find k and the
coordinates of the point of contact. Find the coordinates of the centre and the radius of the circle.

 

Thanks 

nmikho  May 14, 2018
 #1
avatar+19653 
0

1. 

(a) The line 𝑥 + 2𝑦 = 0 meets the circle x2 + y2 − 4𝑥 + 2𝑦 = 0 at A and B. Find the length of AB.

 

\(\begin{array}{|rclrcl|} \hline x+2y &=& 0 \\ x &=& -2y \\\\ x^2 + y^2 - 4x + 2y &=& 0 \quad & | \quad x=-2y \\ (-2y)^2 + y^2 - 4(-2y) + 2y &=& 0 \\ 4y^2 + y^2 + 8y + 2y &=& 0 \\ 5y^2 + 10y &=& 0 \\ 5y(y+2) &=& 0 \\\\ 5y &=& 0 & y+2 &=& 0 \\ y &=& 0 & y &=& -2 \\\\ x &=& -2\cdot 0 & x&=& -2(-2) \\ x &=& 0 & x&=& 4 \\\\ & & A(0,0) &&& B(4,-2) \\ \hline \end{array} \)

 

 

\(\begin{array}{|rcll|} \hline AB &=& \sqrt{(0-4)^2+(0-(-2))^2} \\ &=& \sqrt{16+(0+2)^2} \\ &=& \sqrt{16+4} \\ &=& \sqrt{20} \\ &=& \sqrt{4\cdot 5} \\ &=& 2\sqrt{ 5} \\ \hline \end{array}\)

 

 

laugh

heureka  May 14, 2018
edited by heureka  May 14, 2018
 #2
avatar+19653 
0

(b) The circle 𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 + 𝑘 = 0 touches the x-axis. Find k and the
coordinates of the point of contact. Find the coordinates of the centre and the radius of the circle.

 

\(k=\ ?\)

\(\begin{array}{|rcll|} \hline x^2+y^2-4x-6y +k &=& 0 \quad & | \quad y = 0 (\text{ circle touches the x-axis} ) \\ x^2 -4x +k &=& 0 \\ x &=& \frac{4\pm \sqrt{16-4k} }{2} \quad & | \quad \text{ only one solution for x} \\ 16-4k &=& 0 \\ 4k &=& 16 \\ k &=& 4 \\\\ x &=& \frac{4\pm 0 }{2}\\ x &=& 2 \\ \hline \end{array} \)

 

\( k = 4\\\text{The coordinates of the point of contact is $ (2,0)$}\)


\(\text{Coordinates of the centre $(c_x, cr_y)$ and the radius $r$ of the circle.} \)
\(\begin{array}{|rcll|} \hline x^2+y^2-4x-6y +k &=& 0 \\ x^2-4x+y^2-6y +k &=& 0 \\ (x-2)^2-4+(y-3)^2 -9 +k &=& 0 \\ (x-2)^2 +(y-3)^2 &=& 4+9-k \quad & | \quad k = 4 \\ (x-2)^2 +(y-3)^2 &=& 4+9-4 \\ (x-2)^2 +(y-3)^2 &=& 9 \\ (x-\underbrace{2}_{=\text{c_x}})^2+(y-\underbrace{3}_{=\text{c_y}})^2 &=& \underbrace{9}_{=r^2} \\\\ c_x &=& 2 \\ c_y &=& 3 \\ r &=& \sqrt{9} = 3 \\ \hline \end{array}\)


\(\text{The coordinates of the centre $(2,3)$} \\ \text{Radius of the circle $r = 3$ } \)

 

 

laugh

heureka  May 14, 2018
 #3
avatar+6 
0

Thank you so much, you're awsome :) 

nmikho  May 15, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.