+0  
 
0
412
4
avatar+280 

 

Thanks in advance if someone is there.

Veteran  Mar 18, 2017
 #1
avatar
+1

Verify the following identity:
3/8 - (cos(2 x))/(2) + (cos(4 x))/(8) = sin(x)^4

Put 3/8 - 1/2 cos(2 x) + 1/8 cos(4 x) over the common denominator 8: 3/8 - 1/2 cos(2 x) + 1/8 cos(4 x) = (3 - 4 cos(2 x) + cos(4 x))/8:
(3 - 4 cos(2 x) + cos(4 x))/8 = ^?sin(x)^4

Multiply both sides by 8:
3 - 4 cos(2 x) + cos(4 x) = ^?8 sin(x)^4

cos(2 x) = 1 - 2 sin(x)^2:
3 - 41 - 2 sin(x)^2 + cos(4 x) = ^?8 sin(x)^4

-4 (1 - 2 sin(x)^2) = 8 sin(x)^2 - 4:
3 + 8 sin(x)^2 - 4 + cos(4 x) = ^?8 sin(x)^4

cos(4 x) = 1 - 2 sin(2 x)^2:
3 - 4 + 8 sin(x)^2 + 1 - 2 sin(2 x)^2 = ^?8 sin(x)^4

sin(2 x) = 2 sin(x) cos(x):
3 - 4 + 8 sin(x)^2 + 1 - 2 2 cos(x) sin(x)^2 = ^?8 sin(x)^4

Multiply each exponent in 2 sin(x) cos(x) by 2:
3 - 4 + 8 sin(x)^2 + 1 - 24 cos(x)^2 sin(x)^2 = ^?8 sin(x)^4

cos(x)^2 = 1 - sin(x)^2:
3 - 4 + 8 sin(x)^2 + 1 - 2×4 1 - sin(x)^2 sin(x)^2 = ^?8 sin(x)^4

4 (1 - sin(x)^2) sin(x)^2 = 4 sin(x)^2 - 4 sin(x)^4:
3 - 4 + 8 sin(x)^2 + 1 - 24 sin(x)^2 - 4 sin(x)^4 = ^?8 sin(x)^4

3 - 4 + 8 sin(x)^2 + 1 - 2 (4 sin(x)^2 - 4 sin(x)^4) = 8 sin(x)^4:
8 sin(x)^4 = ^?8 sin(x)^4

The left hand side and right hand side are identical:
Answer: |(identity has been verified)

Guest Mar 18, 2017
 #2
avatar+26742 
+1

Guest#1 beat me to it, but here's my answer anyway:

 

Alan  Mar 18, 2017
 #3
avatar+9485 
+1

 

Thanks in advance if someone is there.

 

laugh

Omi67  Mar 18, 2017

13 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.